These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 33508811)

  • 1. Effects of flight altitude on the lift generation of monarch butterflies: from sea level to overwintering mountain.
    Sridhar MK; Kang CK; Landrum DB; Aono H; Mathis SL; Lee T
    Bioinspir Biomim; 2021 Mar; 16(3):. PubMed ID: 33508811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Power Benefits of High-Altitude Flapping Wing Flight at the Monarch Butterfly Scale.
    Kang CK; Sridhar M; Twigg R; Pohly J; Lee T; Aono H
    Biomimetics (Basel); 2023 Aug; 8(4):. PubMed ID: 37622957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Do Healthy Monarchs Migrate Farther? Tracking Natal Origins of Parasitized vs. Uninfected Monarch Butterflies Overwintering in Mexico.
    Altizer S; Hobson KA; Davis AK; De Roode JC; Wassenaar LI
    PLoS One; 2015; 10(11):e0141371. PubMed ID: 26606389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First lift-off and flight performance of a tailless flapping-wing aerial robot in high-altitude environments.
    Tsuchiya S; Aono H; Asai K; Nonomura T; Ozawa Y; Anyoji M; Ando N; Kang CK; Pohly J
    Sci Rep; 2023 Jun; 13(1):8995. PubMed ID: 37268720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficiency of lift production in flapping and gliding flight of swifts.
    Henningsson P; Hedenström A; Bomphrey RJ
    PLoS One; 2014; 9(2):e90170. PubMed ID: 24587260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How oscillating aerodynamic forces explain the timbre of the hummingbird's hum and other animals in flapping flight.
    Hightower BJ; Wijnings PW; Scholte R; Ingersoll R; Chin DD; Nguyen J; Shorr D; Lentink D
    Elife; 2021 Mar; 10():. PubMed ID: 33724182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beneficial aerodynamic effect of wing scales on the climbing flight of butterflies.
    Slegers N; Heilman M; Cranford J; Lang A; Yoder J; Habegger ML
    Bioinspir Biomim; 2017 Jan; 12(1):016013. PubMed ID: 28000615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The control of flight force by a flapping wing: lift and drag production.
    Sane SP; Dickinson MH
    J Exp Biol; 2001 Aug; 204(Pt 15):2607-26. PubMed ID: 11533111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design optimization and experimental study of a novel mechanism for a hover-able bionic flapping-wing micro air vehicle.
    Deng H; Xiao S; Huang B; Yang L; Xiang X; Ding X
    Bioinspir Biomim; 2020 Dec; 16(2):. PubMed ID: 33075759
    [No Abstract]   [Full Text] [Related]  

  • 10. Enhanced lift and thrust via the translational motion between the thorax-abdomen node and the center of mass of a butterfly with a constructive abdominal oscillation.
    Chang SK; Lai YH; Lin YJ; Yang JT
    Phys Rev E; 2020 Dec; 102(6-1):062407. PubMed ID: 33466078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of abdomen undulation in energy consumption and stability for monarch butterfly.
    Tejaswi KC; Sridhar MK; Kang CK; Lee T
    Bioinspir Biomim; 2021 May; 16(4):. PubMed ID: 33242851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Butterflies fly using efficient propulsive clap mechanism owing to flexible wings.
    Johansson LC; Henningsson P
    J R Soc Interface; 2021 Jan; 18(174):20200854. PubMed ID: 33468023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion.
    Sun M; Wu JH
    J Exp Biol; 2003 Sep; 206(Pt 17):3065-83. PubMed ID: 12878674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lack of genetic differentiation between monarch butterflies with divergent migration destinations.
    Lyons JI; Pierce AA; Barribeau SM; Sternberg ED; Mongue AJ; De Roode JC
    Mol Ecol; 2012 Jul; 21(14):3433-44. PubMed ID: 22574833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The redder the better: wing color predicts flight performance in monarch butterflies.
    Davis AK; Chi J; Bradley C; Altizer S
    PLoS One; 2012; 7(7):e41323. PubMed ID: 22848463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic evidence for gene flow between monarchs with divergent migratory phenotypes and flight performance.
    Talla V; Pierce AA; Adams KL; de Man TJB; Nallu S; Villablanca FX; Kronforst MR; de Roode JC
    Mol Ecol; 2020 Jul; 29(14):2567-2582. PubMed ID: 32542770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A poor substitute for the real thing: captive-reared monarch butterflies are weaker, paler and have less elongated wings than wild migrants.
    Davis AK; Smith FM; Ballew AM
    Biol Lett; 2020 Apr; 16(4):20190922. PubMed ID: 32264783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of wing twist in slow-speed flapping flight of birds: trading brute force against efficiency.
    Thielicke W; Stamhuis EJ
    Bioinspir Biomim; 2018 Aug; 13(5):056015. PubMed ID: 30043756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How the monarch got its spots: Long-distance migration selects for larger white spots on monarch butterfly wings.
    Davis AK; Herkenhoff B; Vu C; Barriga PA; Hassanalian M
    PLoS One; 2023; 18(6):e0286921. PubMed ID: 37343011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forward flight of swallowtail butterfly with simple flapping motion.
    Tanaka H; Shimoyama I
    Bioinspir Biomim; 2010 Jun; 5(2):026003. PubMed ID: 20484782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.