These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33508906)

  • 1. Energy-efficient for advanced oxidation of bio-treated landfill leachate effluent by reactive electrochemical membranes (REMs): Laboratory and pilot scale studies.
    Lin H; Peng H; Feng X; Li X; Zhao J; Yang K; Liao J; Cheng D; Liu X; Lv S; Xu J; Huang Q
    Water Res; 2021 Feb; 190():116790. PubMed ID: 33508906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interface engineering strategy of a Ti
    Li W; Xiao R; Xu J; Lin H; Yang K; Li W; He K; Tang L; Chen J; Wu Y; Lv S
    Water Res; 2022 Jun; 216():118287. PubMed ID: 35334338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Importance of Combined Electrochemical Process Sequence and Electrode Arrangements: A Lab-scale Trial of Real Reverse Osmosis Landfill Leachate Concentrate.
    Sato Y; Zeng Q; Meng L; Chen G
    Water Res; 2021 Mar; 192():116849. PubMed ID: 33517046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Review on landfill leachate treatment by electrochemical oxidation: Drawbacks, challenges and future scope.
    Mandal P; Dubey BK; Gupta AK
    Waste Manag; 2017 Nov; 69():250-273. PubMed ID: 28865908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical oxidation of wastewater - opportunities and drawbacks.
    Woisetschläger D; Humpl B; Koncar M; Siebenhofer M
    Water Sci Technol; 2013; 68(5):1173-9. PubMed ID: 24037171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient electrochemical oxidation of antibiotic wastewater using a graphene-loaded PbO
    Peng Y; Yan Y; Ma X; Jiang B; Chen R; Feng H; Xia Y
    Environ Res; 2024 Jul; 259():119517. PubMed ID: 38964585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Re-evaluation of sulfate radical based-advanced oxidation processes (SR-AOPs) for treatment of raw municipal landfill leachate.
    Chen C; Feng H; Deng Y
    Water Res; 2019 Apr; 153():100-107. PubMed ID: 30703674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Landfill leachate treatment by sequential membrane bioreactor and electro-oxidation processes.
    Zolfaghari M; Jardak K; Drogui P; Brar SK; Buelna G; Dubé R
    J Environ Manage; 2016 Dec; 184(Pt 2):318-326. PubMed ID: 27733297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research on the treatment of biologically treated landfill leachate by joint electrochemical system.
    Deng Y; Feng C; Chen N; Hu W; Kuang P; Liu H; Hu Z; Li R
    Waste Manag; 2018 Dec; 82():177-187. PubMed ID: 30509580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants and ammonia in landfill leachate.
    Deng Y; Ezyske CM
    Water Res; 2011 Nov; 45(18):6189-94. PubMed ID: 21959093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporation of electrochemical advanced oxidation processes in a multistage treatment system for sanitary landfill leachate.
    Moreira FC; Soler J; Fonseca A; Saraiva I; Boaventura RA; Brillas E; Vilar VJ
    Water Res; 2015 Sep; 81():375-87. PubMed ID: 26140989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization aspects of the biological nitrogen removal process in a full-scale twin sequencing batch reactor (SBR) system in series treating landfill leachate.
    Remmas N; Ntougias S; Chatzopoulou M; Melidis P
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018 Jul; 53(9):847-853. PubMed ID: 29596027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of COD from a stabilized landfill leachate by physicochemical and advanced oxidative process.
    Cheibub AF; Campos JC; da Fonseca FV
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(14):1718-26. PubMed ID: 25320859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance investigation of electrochemical assisted HClO/Fe
    Ye Z; Miao F; Zhang H
    Environ Sci Pollut Res Int; 2022 Jul; 29(31):46875-46884. PubMed ID: 35169949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling electrochemical oxidation and reduction of sulfamethoxazole using electrocatalytic reactive electrochemical membranes.
    Misal SN; Lin MH; Mehraeen S; Chaplin BP
    J Hazard Mater; 2020 Feb; 384():121420. PubMed ID: 31685319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laboratory and pilot plant scale study on the electrochemical oxidation of landfill leachate.
    Anglada A; Urtiaga AM; Ortiz I
    J Hazard Mater; 2010 Sep; 181(1-3):729-35. PubMed ID: 20542632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pilot-scale
    Zhang J; Wu X; Qiu D; Mao J; Zhang H
    Environ Technol; 2019 Jul; 40(17):2191-2200. PubMed ID: 28488464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical oxidation of reverse osmosis concentrate using a pilot-scale reactive electrochemical membrane filtration system: Performance and mechanisms.
    Ren L; Li Y; Guo Y; Yang K; Yi Q; Wang X; Wu Z; Wang Z
    J Hazard Mater; 2024 Mar; 465():133315. PubMed ID: 38150763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization and electrochemical treatment of landfill leachate.
    Orescanin V; Kollar R; Ruk D; Nad K
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(3):462-9. PubMed ID: 22320699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy-efficient removal of trace antibiotics from low-conductivity water using a Ti
    Yang K; Lin H; Feng X; Jiang J; Ma J; Yang Z
    Water Res; 2022 Oct; 224():119047. PubMed ID: 36103779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.