These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. High-throughput cis-regulatory element discovery in the vector mosquito Aedes aegypti. Behura SK; Sarro J; Li P; Mysore K; Severson DW; Emrich SJ; Duman-Scheel M BMC Genomics; 2016 May; 17():341. PubMed ID: 27161480 [TBL] [Abstract][Full Text] [Related]
3. Identification of Aedes aegypti cis-regulatory elements that promote gene expression in olfactory receptor neurons of distantly related dipteran insects. Mysore K; Li P; Duman-Scheel M Parasit Vectors; 2018 Jul; 11(1):406. PubMed ID: 29996889 [TBL] [Abstract][Full Text] [Related]
4. Genomic composition and evolution of Aedes aegypti chromosomes revealed by the analysis of physically mapped supercontigs. Timoshevskiy VA; Kinney NA; deBruyn BS; Mao C; Tu Z; Severson DW; Sharakhov IV; Sharakhova MV BMC Biol; 2014 Apr; 12():27. PubMed ID: 24731704 [TBL] [Abstract][Full Text] [Related]
6. An integrated linkage, chromosome, and genome map for the yellow fever mosquito Aedes aegypti. Timoshevskiy VA; Severson DW; Debruyn BS; Black WC; Sharakhov IV; Sharakhova MV PLoS Negl Trop Dis; 2013; 7(2):e2052. PubMed ID: 23459230 [TBL] [Abstract][Full Text] [Related]
7. De novo assembly and annotation of the Asian tiger mosquito (Aedes albopictus) repeatome with dnaPipeTE from raw genomic reads and comparative analysis with the yellow fever mosquito (Aedes aegypti). Goubert C; Modolo L; Vieira C; ValienteMoro C; Mavingui P; Boulesteix M Genome Biol Evol; 2015 Mar; 7(4):1192-205. PubMed ID: 25767248 [TBL] [Abstract][Full Text] [Related]
8. Assembly of the genome of the disease vector Aedes aegypti onto a genetic linkage map allows mapping of genes affecting disease transmission. Juneja P; Osei-Poku J; Ho YS; Ariani CV; Palmer WJ; Pain A; Jiggins FM PLoS Negl Trop Dis; 2014; 8(1):e2652. PubMed ID: 24498447 [TBL] [Abstract][Full Text] [Related]
9. A chromosome-level assembly of the widely used Rockefeller strain of Aedes aegypti, the yellow fever mosquito. Fisher CR; Wilson M; Scott JG G3 (Bethesda); 2022 Nov; 12(11):. PubMed ID: 36086997 [TBL] [Abstract][Full Text] [Related]
10. The sequence of a male-specific genome region containing the sex determination switch in Aedes aegypti. Turner J; Krishna R; Van't Hof AE; Sutton ER; Matzen K; Darby AC Parasit Vectors; 2018 Oct; 11(1):549. PubMed ID: 30342535 [TBL] [Abstract][Full Text] [Related]
11. De novo assembly of the Dudchenko O; Batra SS; Omer AD; Nyquist SK; Hoeger M; Durand NC; Shamim MS; Machol I; Lander ES; Aiden AP; Aiden EL Science; 2017 Apr; 356(6333):92-95. PubMed ID: 28336562 [TBL] [Abstract][Full Text] [Related]
12. A single unidirectional piRNA cluster similar to the Aguiar ERGR; de Almeida JPP; Queiroz LR; Oliveira LS; Olmo RP; de Faria IJDS; Imler JL; Gruber A; Matthews BJ; Marques JT RNA; 2020 May; 26(5):581-594. PubMed ID: 31996404 [TBL] [Abstract][Full Text] [Related]
13. Genome-based polymorphic microsatellite development and validation in the mosquito Aedes aegypti and application to population genetics in Haiti. Lovin DD; Washington KO; deBruyn B; Hemme RR; Mori A; Epstein SR; Harker BW; Streit TG; Severson DW BMC Genomics; 2009 Dec; 10():590. PubMed ID: 20003193 [TBL] [Abstract][Full Text] [Related]
14. Evolutionary analysis of the kinesin light chain genes in the yellow fever mosquito Aedes aegypti: gene duplication as a source for novel early zygotic genes. Biedler JK; Tu Z BMC Evol Biol; 2010 Jul; 10():206. PubMed ID: 20615250 [TBL] [Abstract][Full Text] [Related]
15. Redeployment of a conserved gene regulatory network during Aedes aegypti development. Suryamohan K; Hanson C; Andrews E; Sinha S; Scheel MD; Halfon MS Dev Biol; 2016 Aug; 416(2):402-13. PubMed ID: 27341759 [TBL] [Abstract][Full Text] [Related]
16. Analysis of 14 BAC sequences from the Aedes aegypti genome: a benchmark for genome annotation and assembly. Lobo NF; Campbell KS; Thaner D; Debruyn B; Koo H; Gelbart WM; Loftus BJ; Severson DW; Collins FH Genome Biol; 2007; 8(5):R88. PubMed ID: 17519023 [TBL] [Abstract][Full Text] [Related]
17. Insights into the preservation of the homomorphic sex-determining chromosome of Aedes aegypti from the discovery of a male-biased gene tightly linked to the M-locus. Hall AB; Timoshevskiy VA; Sharakhova MV; Jiang X; Basu S; Anderson MA; Hu W; Sharakhov IV; Adelman ZN; Tu Z Genome Biol Evol; 2014 Jan; 6(1):179-91. PubMed ID: 24398378 [TBL] [Abstract][Full Text] [Related]
18. RNA-seq analyses of blood-induced changes in gene expression in the mosquito vector species, Aedes aegypti. Bonizzoni M; Dunn WA; Campbell CL; Olson KE; Dimon MT; Marinotti O; James AA BMC Genomics; 2011 Jan; 12():82. PubMed ID: 21276245 [TBL] [Abstract][Full Text] [Related]
19. Genomic organization and splicing evolution of the doublesex gene, a Drosophila regulator of sexual differentiation, in the dengue and yellow fever mosquito Aedes aegypti. Salvemini M; Mauro U; Lombardo F; Milano A; Zazzaro V; Arcà B; Polito LC; Saccone G BMC Evol Biol; 2011 Feb; 11():41. PubMed ID: 21310052 [TBL] [Abstract][Full Text] [Related]
20. A Multipurpose, High-Throughput Single-Nucleotide Polymorphism Chip for the Dengue and Yellow Fever Mosquito, Aedes aegypti. Evans BR; Gloria-Soria A; Hou L; McBride C; Bonizzoni M; Zhao H; Powell JR G3 (Bethesda); 2015 Feb; 5(5):711-8. PubMed ID: 25721127 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]