These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 33509492)
1. Standardization of near infrared hyperspectral imaging for wheat single kernel sorting according to deoxynivalenol level. Femenias A; Bainotti MB; Gatius F; Ramos AJ; Marín S Food Res Int; 2021 Jan; 139():109925. PubMed ID: 33509492 [TBL] [Abstract][Full Text] [Related]
2. Near infrared hyperspectral imaging as a sorting tool for deoxynivalenol reduction in wheat batches. Vicens-Sans A; Pascari X; Molino F; Ramos AJ; Marín S Food Res Int; 2024 Feb; 178():113984. PubMed ID: 38309885 [TBL] [Abstract][Full Text] [Related]
3. Near-infrared hyperspectral imaging for deoxynivalenol and ergosterol estimation in wheat samples. Femenias A; Gatius F; Ramos AJ; Sanchis V; Marín S Food Chem; 2021 Mar; 341(Pt 2):128206. PubMed ID: 33035826 [TBL] [Abstract][Full Text] [Related]
4. Quantification and classification of deoxynivalenol-contaminated oat samples by near-infrared hyperspectral imaging. Teixido-Orries I; Molino F; Femenias A; Ramos AJ; Marín S Food Chem; 2023 Aug; 417():135924. PubMed ID: 36934710 [TBL] [Abstract][Full Text] [Related]
5. Machine Learning Analysis of Hyperspectral Images of Damaged Wheat Kernels. Dhakal K; Sivaramakrishnan U; Zhang X; Belay K; Oakes J; Wei X; Li S Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050581 [TBL] [Abstract][Full Text] [Related]
7. Protein content prediction in single wheat kernels using hyperspectral imaging. Caporaso N; Whitworth MB; Fisk ID Food Chem; 2018 Feb; 240():32-42. PubMed ID: 28946278 [TBL] [Abstract][Full Text] [Related]
8. Fourier transform near-infrared and mid-infrared spectroscopy as efficient tools for rapid screening of deoxynivalenol contamination in wheat bran. De Girolamo A; Cervellieri S; Cortese M; Porricelli ACR; Pascale M; Longobardi F; von Holst C; Ciaccheri L; Lippolis V J Sci Food Agric; 2019 Mar; 99(4):1946-1953. PubMed ID: 30270446 [TBL] [Abstract][Full Text] [Related]
9. Estimating deoxynivalenol contents of wheat samples containing different levels of Fusarium-damaged kernels by diffuse reflectance spectrometry and partial least square regression. Beyer M; Pogoda F; Ronellenfitsch FK; Hoffmann L; Udelhoven T Int J Food Microbiol; 2010 Sep; 142(3):370-4. PubMed ID: 20678823 [TBL] [Abstract][Full Text] [Related]
10. Estimating mycotoxin contents of Fusarium-damaged winter wheat kernels. Beyer M; Klix MB; Verreet JA Int J Food Microbiol; 2007 Nov; 119(3):153-8. PubMed ID: 17706313 [TBL] [Abstract][Full Text] [Related]
11. Integration of spectroscopy and image for identifying fusarium damage in wheat kernels. Zhang D; Chen G; Zhang H; Jin N; Gu C; Weng S; Wang Q; Chen Y Spectrochim Acta A Mol Biomol Spectrosc; 2020 Aug; 236():118344. PubMed ID: 32330824 [TBL] [Abstract][Full Text] [Related]
12. Hyperspectral imaging and improved feature variable selection for automated determination of deoxynivalenol in various genetic lines of barley kernels for resistance screening. Su WH; Yang C; Dong Y; Johnson R; Page R; Szinyei T; Hirsch CD; Steffenson BJ Food Chem; 2021 May; 343():128507. PubMed ID: 33160773 [TBL] [Abstract][Full Text] [Related]
13. Rapid analysis of deoxynivalenol in durum wheat by FT-NIR spectroscopy. De Girolamo A; Cervellieri S; Visconti A; Pascale M Toxins (Basel); 2014 Nov; 6(11):3129-43. PubMed ID: 25384107 [TBL] [Abstract][Full Text] [Related]
14. Hyperspectral imaging for the classification of individual cereal kernels according to fungal and mycotoxins contamination: A review. Femenias A; Gatius F; Ramos AJ; Teixido-Orries I; Marín S Food Res Int; 2022 May; 155():111102. PubMed ID: 35400475 [TBL] [Abstract][Full Text] [Related]
15. Using near infrared transmittance to generate sorted fractions of Fusarium-infected wheat and the impact on broiler performance. Kautzman ME; Wickstrom ML; Hogan NS; Scott TA Poult Sci; 2015 Jul; 94(7):1619-28. PubMed ID: 26015589 [TBL] [Abstract][Full Text] [Related]
17. NIR Hyperspectral Imaging Technology Combined with Multivariate Methods to Study the Residues of Different Concentrations of Omethoate on Wheat Grain Surface. Zhang L; Rao Z; Ji H Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31319577 [TBL] [Abstract][Full Text] [Related]
18. Predicting micronutrients of wheat using hyperspectral imaging. Hu N; Li W; Du C; Zhang Z; Gao Y; Sun Z; Yang L; Yu K; Zhang Y; Wang Z Food Chem; 2021 May; 343():128473. PubMed ID: 33160768 [TBL] [Abstract][Full Text] [Related]
19. Influence of grain topography on near infrared hyperspectral images. Manley M; McGoverin CM; Engelbrecht P; Geladi P Talanta; 2012 Jan; 89():223-30. PubMed ID: 22284484 [TBL] [Abstract][Full Text] [Related]
20. Rapid and non-invasive analysis of deoxynivalenol in durum and common wheat by Fourier-Transform Near Infrared (FT-NIR) spectroscopy. De Girolamo A; Lippolis V; Nordkvist E; Visconti A Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2009 Jun; 26(6):907-17. PubMed ID: 19680966 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]