These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 33509511)
1. Volatile profiles of five jackfruit (Artocarpus heterophyllus Lam.) cultivars grown in the Mexican Pacific area. Barros-Castillo JC; Calderón-Santoyo M; Cuevas-Glory LF; Pino JA; Ragazzo-Sánchez JA Food Res Int; 2021 Jan; 139():109961. PubMed ID: 33509511 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of volatile metabolites as markers in Lycopersicon esculentum L. cultivars discrimination by multivariate analysis of headspace solid phase microextraction and mass spectrometry data. Figueira J; Câmara H; Pereira J; Câmara JS Food Chem; 2014 Feb; 145():653-63. PubMed ID: 24128528 [TBL] [Abstract][Full Text] [Related]
3. Comparative analysis of volatile compounds in thirty nine melon cultivars by headspace solid-phase microextraction and gas chromatography-mass spectrometry. Shi J; Wu H; Xiong M; Chen Y; Chen J; Zhou B; Wang H; Li L; Fu X; Bie Z; Huang Y Food Chem; 2020 Jun; 316():126342. PubMed ID: 32044706 [TBL] [Abstract][Full Text] [Related]
4. Volatile profiling of fruits of 17 mango cultivars by HS-SPME-GC/MS combined with principal component analysis. Shimizu K; Matsukawa T; Kanematsu R; Itoh K; Kanzaki S; Shigeoka S; Kajiyama S Biosci Biotechnol Biochem; 2021 Jul; 85(8):1789-1797. PubMed ID: 34057172 [TBL] [Abstract][Full Text] [Related]
5. Characterisation of the chocolate aroma in roast jackfruit seeds. Spada FP; Balagiannis DP; Purgatto E; do Alencar SM; Canniatti-Brazaca SG; Parker JK Food Chem; 2021 Aug; 354():129537. PubMed ID: 33756328 [TBL] [Abstract][Full Text] [Related]
6. Dynamic headspace solid-phase microextraction combined with one-dimensional gas chromatography-mass spectrometry as a powerful tool to differentiate banana cultivars based on their volatile metabolite profile. Pontes M; Pereira J; Câmara JS Food Chem; 2012 Oct; 134(4):2509-20. PubMed ID: 23442718 [TBL] [Abstract][Full Text] [Related]
7. Discrimination of Chinese vinegars based on headspace solid-phase microextraction-gas chromatography mass spectrometry of volatile compounds and multivariate analysis. Xiao Z; Dai S; Niu Y; Yu H; Zhu J; Tian H; Gu Y J Food Sci; 2011 Oct; 76(8):C1125-35. PubMed ID: 22417575 [TBL] [Abstract][Full Text] [Related]
8. Volatile fingerprints and biomarkers of three representative kiwifruit cultivars obtained by headspace solid-phase microextraction gas chromatography mass spectrometry and chemometrics. Zhang CY; Zhang Q; Zhong CH; Guo MQ Food Chem; 2019 Jan; 271():211-215. PubMed ID: 30236669 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of the volatile profile of 33 Pyrus ussuriensis cultivars by HS-SPME with GC-MS. Qin G; Tao S; Cao Y; Wu J; Zhang H; Huang W; Zhang S Food Chem; 2012 Oct; 134(4):2367-82. PubMed ID: 23442698 [TBL] [Abstract][Full Text] [Related]
10. Characterization of the Major Odor-Active Compounds in Jackfruit Pulp. Grimm JE; Steinhaus M J Agric Food Chem; 2019 May; 67(20):5838-5846. PubMed ID: 31050422 [TBL] [Abstract][Full Text] [Related]
11. Characterization of volatile substances in apples from Rosaceae family by headspace solid-phase microextraction followed by GC-qMS. Ferreira L; Perestrelo R; Caldeira M; Câmara JS J Sep Sci; 2009 Jun; 32(11):1875-88. PubMed ID: 19425016 [TBL] [Abstract][Full Text] [Related]
12. Analysis of Volatile Compounds in Pears by HS-SPME-GC×GC-TOFMS. Wang C; Zhang W; Li H; Mao J; Guo C; Ding R; Wang Y; Fang L; Chen Z; Yang G Molecules; 2019 May; 24(9):. PubMed ID: 31075878 [TBL] [Abstract][Full Text] [Related]
13. Development and comprehensive HS-SPME/GC-MS analysis optimization, comparison, and evaluation of different cabbage cultivars (Brassica oleracea L. var. capitata L.) volatile components. Wei S; Xiao X; Wei L; Li L; Li G; Liu F; Xie J; Yu J; Zhong Y Food Chem; 2021 Mar; 340():128166. PubMed ID: 33010642 [TBL] [Abstract][Full Text] [Related]
14. Volatile metabolite profiling reveals the changes in the volatile compounds of new spontaneously generated loquat cultivars. Besada C; Sanchez G; Gil R; Granell A; Salvador A Food Res Int; 2017 Oct; 100(Pt 1):234-243. PubMed ID: 28873683 [TBL] [Abstract][Full Text] [Related]
15. Comparative Investigation on the Phytochemicals and Biological Activities of Jackfruit (Artocarpus heterophyllus Lam.) pulp from Five Cultivars. Pu SM; Chen WD; Zhang YJ; Li JH; Zhou W; Chen J; Chen MS; Liu CM Plant Foods Hum Nutr; 2023 Mar; 78(1):76-85. PubMed ID: 36327062 [TBL] [Abstract][Full Text] [Related]
16. Investigation of volatile compounds in two raspberry cultivars by two headspace techniques: solid-phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) and proton-transfer reaction-mass spectrometry (PTR-MS). Aprea E; Biasioli F; Carlin S; Endrizzi I; Gasperi F J Agric Food Chem; 2009 May; 57(10):4011-8. PubMed ID: 19348421 [TBL] [Abstract][Full Text] [Related]
17. [Recent advances in the application of headspace gas chromatography-mass spectrometry]. Zhang X; Liu W; Lu Y; Lü Y Se Pu; 2018 Oct; 36(10):962-971. PubMed ID: 30378354 [TBL] [Abstract][Full Text] [Related]
18. Geographical discrimination of Chinese winter wheat using volatile compound analysis by HS-SPME/GC-MS coupled with multivariate statistical analysis. Wadood SA; Boli G; Xiaowen Z; Raza A; Yimin W J Mass Spectrom; 2020 Jan; 55(1):e4453. PubMed ID: 31652388 [TBL] [Abstract][Full Text] [Related]
19. Comparative analysis of the volatile fraction from Annona cherimola Mill. cultivars by solid-phase microextraction and gas chromatography-quadrupole mass spectrometry detection. Ferreira L; Perestrelo R; Câmara JS Talanta; 2009 Jan; 77(3):1087-96. PubMed ID: 19064096 [TBL] [Abstract][Full Text] [Related]
20. Volatile compounds in perianth and corona of Li X; Tang D; Shi Y Nat Prod Res; 2019 Aug; 33(15):2281-2284. PubMed ID: 30375245 [No Abstract] [Full Text] [Related] [Next] [New Search]