BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 33510169)

  • 1. Transdermal electroosmotic flow generated by a porous microneedle array patch.
    Kusama S; Sato K; Matsui Y; Kimura N; Abe H; Yoshida S; Nishizawa M
    Nat Commun; 2021 Jan; 12(1):658. PubMed ID: 33510169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frustoconical porous microneedle for electroosmotic transdermal drug delivery.
    Terutsuki D; Segawa R; Kusama S; Abe H; Nishizawa M
    J Control Release; 2023 Feb; 354():694-700. PubMed ID: 36693528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reverse iontophoresis generated by porous microneedles produces an electroosmotic flow for glucose determination.
    He QY; Zhao JH; Du SM; Li DG; Luo ZW; You XQ; Liu J
    Talanta; 2024 Jan; 267():125156. PubMed ID: 37703780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Swellable silk fibroin microneedles for transdermal drug delivery.
    Yin Z; Kuang D; Wang S; Zheng Z; Yadavalli VK; Lu S
    Int J Biol Macromol; 2018 Jan; 106():48-56. PubMed ID: 28778522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microneedle-iontophoresis combinations for enhanced transdermal drug delivery.
    Donnelly RF; Garland MJ; Alkilani AZ
    Methods Mol Biol; 2014; 1141():121-32. PubMed ID: 24567135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissolving polymeric microneedle arrays for electrically assisted transdermal drug delivery.
    Garland MJ; Caffarel-Salvador E; Migalska K; Woolfson AD; Donnelly RF
    J Control Release; 2012 Apr; 159(1):52-9. PubMed ID: 22265694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macromolecular delivery into skin using a hollow microneedle.
    Wonglertnirant N; Todo H; Opanasopit P; Ngawhirunpat T; Sugibayashi K
    Biol Pharm Bull; 2010; 33(12):1988-93. PubMed ID: 21139238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transdermal drug delivery by in-skin electroporation using a microneedle array.
    Yan K; Todo H; Sugibayashi K
    Int J Pharm; 2010 Sep; 397(1-2):77-83. PubMed ID: 20619329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transdermal delivery of relatively high molecular weight drugs using novel self-dissolving microneedle arrays fabricated from hyaluronic acid and their characteristics and safety after application to the skin.
    Liu S; Jin MN; Quan YS; Kamiyama F; Kusamori K; Katsumi H; Sakane T; Yamamoto A
    Eur J Pharm Biopharm; 2014 Feb; 86(2):267-76. PubMed ID: 24120887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ex vivo evaluation of a microneedle array device for transdermal application.
    Indermun S; Choonara YE; Kumar P; du Toit LC; Modi G; van Vuuren S; Luttge R; Pillay V
    Int J Pharm; 2015 Dec; 496(2):351-9. PubMed ID: 26453791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of pretreatment of needle puncture and sandpaper abrasion on the in vitro skin permeation of fluorescein isothiocyanate (FITC)-dextran.
    Wu XM; Todo H; Sugibayashi K
    Int J Pharm; 2006 Jun; 316(1-2):102-8. PubMed ID: 16597490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrically-assisted delivery of an anionic protein across intact skin: cathodal iontophoresis of biologically active ribonuclease T1.
    Dubey S; Kalia YN
    J Control Release; 2011 Jun; 152(3):356-62. PubMed ID: 21397646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of skin permeation of high molecular compounds by a combination of microneedle pretreatment and iontophoresis.
    Wu XM; Todo H; Sugibayashi K
    J Control Release; 2007 Apr; 118(2):189-95. PubMed ID: 17270306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iontophoresis-driven porous microneedle array patch for active transdermal drug delivery.
    Li Y; Yang J; Zheng Y; Ye R; Liu B; Huang Y; Zhou W; Jiang L
    Acta Biomater; 2021 Feb; 121():349-358. PubMed ID: 33340733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transdermal drug delivery enhanced by low voltage electropulsation (LVE).
    Sammeta SM; Vaka SR; Murthy SN
    Pharm Dev Technol; 2009; 14(2):159-64. PubMed ID: 19519188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An array of porous microneedles for transdermal monitoring of intercellular swelling.
    Nagamine K; Kubota J; Kai H; Ono Y; Nishizawa M
    Biomed Microdevices; 2017 Sep; 19(3):68. PubMed ID: 28776235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transdermal drug delivery using a porous microneedle device driven by a hydrogel electroosmotic pump.
    Wang G; Kato K; Aoki I; Ichinose S; Inoue D; Tottori S; Nishizawa M
    J Mater Chem B; 2024 Feb; 12(6):1490-1494. PubMed ID: 38234189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microneedles: A smart approach and increasing potential for transdermal drug delivery system.
    Waghule T; Singhvi G; Dubey SK; Pandey MM; Gupta G; Singh M; Dua K
    Biomed Pharmacother; 2019 Jan; 109():1249-1258. PubMed ID: 30551375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microneedle-based drug delivery systems for transdermal route.
    Pierre MB; Rossetti FC
    Curr Drug Targets; 2014 Mar; 15(3):281-91. PubMed ID: 24144208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo real-time monitoring system of electroporation mediated control of transdermal and topical drug delivery.
    Blagus T; Markelc B; Cemazar M; Kosjek T; Preat V; Miklavcic D; Sersa G
    J Control Release; 2013 Dec; 172(3):862-71. PubMed ID: 24113487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.