These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 33510176)

  • 1. Optically transparent and very thin structure against electromagnetic pulse (EMP) using metal mesh and saltwater for shielding windows.
    Phan DT; Jung CW
    Sci Rep; 2021 Jan; 11(1):2603. PubMed ID: 33510176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on the Shielding Effectiveness of an Arc Thermal Metal Spraying Method against an Electromagnetic Pulse.
    Lee HS; Choe HB; Baek IY; Singh JK; Ismail MA
    Materials (Basel); 2017 Oct; 10(10):. PubMed ID: 28976931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Double-layer metal mesh etched by femtosecond laser for high-performance electromagnetic interference shielding window.
    Zhang Y; Dong H; Li Q; Mou N; Chen L; Zhang L
    RSC Adv; 2019 Jul; 9(39):22282-22287. PubMed ID: 35519472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multilayered salt water with high optical transparency for EMI shielding applications.
    Phan DT; Jung CW
    Sci Rep; 2020 Dec; 10(1):21549. PubMed ID: 33299066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electromagnetic Shielding Performance of Carbon Black Mixed Concrete with Zn-Al Metal Thermal Spray Coating.
    Lee HS; Park JH; Singh JK; Choi HJ; Mandal S; Jang JM; Yang HM
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32079313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible, Transparent and Conductive Metal Mesh Films with Ultra-High FoM for Stretchable Heating and Electromagnetic Interference Shielding.
    Chen Z; Yang S; Huang J; Gu Y; Huang W; Liu S; Lin Z; Zeng Z; Hu Y; Chen Z; Yang B; Gui X
    Nanomicro Lett; 2024 Jan; 16(1):92. PubMed ID: 38252258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-layer silver nanowire/polyethylene terephthalate mesh structure for highly efficient transparent electromagnetic interference shielding.
    Gu J; Hu S; Ji H; Feng H; Zhao W; Wei J; Li M
    Nanotechnology; 2020 May; 31(18):185303. PubMed ID: 31958779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Transparent Ka-/W-Band Electromagnetic Shielding Films Based on Double-Layered Metal Meshes.
    Chung SI; Kang TW; Kim PK; Ha TG; Hong YP
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):56612-56622. PubMed ID: 37988133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabry-Perot resonance-suppressed double-layer metal mesh window for electromagnetic interference shielding.
    Li H; Yin Z; Zhang C; Zhang Y; Deng R; Dong H; Wang S; Zhang L
    Opt Lett; 2022 Oct; 47(20):5393-5396. PubMed ID: 36240371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Embedded flexible and transparent double-layer nickel-mesh for high shielding efficiency.
    Jiang Z; Zhao S; Huang W; Chen L; Liu YH
    Opt Express; 2020 Aug; 28(18):26531-26542. PubMed ID: 32906925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Efficient and Reliable Transparent Electromagnetic Interference Shielding Film.
    Jia LC; Yan DX; Liu X; Ma R; Wu HY; Li ZM
    ACS Appl Mater Interfaces; 2018 Apr; 10(14):11941-11949. PubMed ID: 29557166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible and Transparent Ferroferric Oxide-Modified Silver Nanowire Film for Efficient Electromagnetic Interference Shielding.
    Wang Z; Jiao B; Qing Y; Nan H; Huang L; Wei W; Peng Y; Yuan F; Dong H; Hou X; Wu Z
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2826-2834. PubMed ID: 31852186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Freestanding "core-shell" AgNWs/metallic hybrid mesh electrodes for a highly efficient transparent electromagnetic interference shielding film.
    Jiang Z; Zhao S; Chen L; Liu YH
    Opt Express; 2021 Jun; 29(12):18760-18768. PubMed ID: 34154125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible and transparent silver nanowires/biopolymer film for high-efficient electromagnetic interference shielding.
    Wang G; Hao L; Zhang X; Tan S; Zhou M; Gu W; Ji G
    J Colloid Interface Sci; 2022 Feb; 607(Pt 1):89-99. PubMed ID: 34492357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly efficient and stable transparent electromagnetic interference shielding films based on silver nanowires.
    Zhu X; Xu J; Qin F; Yan Z; Guo A; Kan C
    Nanoscale; 2020 Jul; 12(27):14589-14597. PubMed ID: 32614025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gradient Structure Design of Flexible Waterborne Polyurethane Conductive Films for Ultraefficient Electromagnetic Shielding with Low Reflection Characteristic.
    Xu Y; Yang Y; Yan DX; Duan H; Zhao G; Liu Y
    ACS Appl Mater Interfaces; 2018 Jun; 10(22):19143-19152. PubMed ID: 29766720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrathin, lightweight, and freestanding metallic mesh for transparent electromagnetic interference shielding.
    Jiang ZY; Huang W; Chen LS; Liu YH
    Opt Express; 2019 Aug; 27(17):24194-24206. PubMed ID: 31510313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Surface Treatment Conditions on the Bonding Strength and Electromagnetic Pulse Shielding of Concrete Using the 85Zn-15Al Arc Thermal Metal Spraying Method.
    Jang J; Wi K; Lee HS; Singh JK; Lee HH
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transparent and high-performance electromagnetic interference shielding composite film based on single-crystal graphene/hexagonal boron nitride heterostructure.
    Su Z; Yang H; Wang G; Zhang Y; Zhang J; Lin J; Jia D; Wang H; Lu Z; Hu P
    J Colloid Interface Sci; 2023 Jun; 640():610-618. PubMed ID: 36878078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Transparent and Broadband Electromagnetic Interference Shielding Based on Ultrathin Doped Ag and Conducting Oxides Hybrid Film Structures.
    Wang H; Ji C; Zhang C; Zhang Y; Zhang Z; Lu Z; Tan J; Guo LJ
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11782-11791. PubMed ID: 30817123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.