These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33510322)

  • 1. Quantum dot and electron acceptor nano-heterojunction for photo-induced capacitive charge-transfer.
    Karatum O; Eren GO; Melikov R; Onal A; Ow-Yang CW; Sahin M; Nizamoglu S
    Sci Rep; 2021 Jan; 11(1):2460. PubMed ID: 33510322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of heterojunction on exciton binding energy and electron-hole recombination probability in CdSe/ZnS quantum dots.
    Elward JM; Chakraborty A
    J Chem Theory Comput; 2015 Feb; 11(2):462-71. PubMed ID: 26580906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photofabrication of fullerene-shelled quantum dots supramolecular nanoparticles for solar energy harvesting.
    Shibu ES; Sonoda A; Tao Z; Feng Q; Furube A; Masuo S; Wang L; Tamai N; Ishikawa M; Biju V
    ACS Nano; 2012 Feb; 6(2):1601-8. PubMed ID: 22260241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacial charge separation and recombination in InP and quasi-type II InP/CdS core/shell quantum dot-molecular acceptor complexes.
    Wu K; Song N; Liu Z; Zhu H; Rodríguez-Córdoba W; Lian T
    J Phys Chem A; 2013 Aug; 117(32):7561-70. PubMed ID: 23639000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blinking suppression in CdSe/ZnS single quantum dots by TiO2 nanoparticles.
    Hamada M; Nakanishi S; Itoh T; Ishikawa M; Biju V
    ACS Nano; 2010 Aug; 4(8):4445-54. PubMed ID: 20731430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Super sensitization: grand charge (hole/electron) separation in ATC dye sensitized CdSe, CdSe/ZnS type-I, and CdSe/CdTe type-II core-shell quantum dots.
    Debnath T; Maity P; Ghosh HN
    Chemistry; 2014 Oct; 20(41):13305-13. PubMed ID: 25179856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical Study of the Charge Transfer Exciton Binding Energy in Semiconductor Materials for Polymer:Fullerene-Based Bulk Heterojunction Solar Cells.
    Izquierdo MA; Broer R; Havenith RWA
    J Phys Chem A; 2019 Feb; 123(6):1233-1242. PubMed ID: 30676720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blinking Suppression in Highly Excited CdSe/ZnS Quantum Dots by Electron Transfer under Large Positive Gibbs (Free) Energy Change.
    Thomas EM; Ghimire S; Kohara R; Anil AN; Yuyama KI; Takano Y; Thomas KG; Biju V
    ACS Nano; 2018 Sep; 12(9):9060-9069. PubMed ID: 30103604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wavefunction engineering for efficient photoinduced-electron transfer in CuInS
    Sun J; An L; Xue G; Li X
    Nanotechnology; 2020 May; 31(21):215408. PubMed ID: 32040949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoengineering InP Quantum Dot-Based Photoactive Biointerfaces for Optical Control of Neurons.
    Karatum O; Aria MM; Eren GO; Yildiz E; Melikov R; Srivastava SB; Surme S; Dogru IB; Bahmani Jalali H; Ulgut B; Sahin A; Kavakli IH; Nizamoglu S
    Front Neurosci; 2021; 15():652608. PubMed ID: 34248476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shell thickness dependent photoinduced hole transfer in hybrid conjugated polymer/quantum dot nanocomposites: from ensemble to single hybrid level.
    Xu Z; Hine CR; Maye MM; Meng Q; Cotlet M
    ACS Nano; 2012 Jun; 6(6):4984-92. PubMed ID: 22686521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfacial Engineering Determines Band Alignment and Steers Charge Separation and Recombination at an Inorganic Perovskite Quantum Dot/WS
    Wang S; Luo Q; Fang WH; Long R
    J Phys Chem Lett; 2019 Mar; 10(6):1234-1241. PubMed ID: 30818951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Band Structure Engineering and Defect Passivation of Cu
    Guo H; Yang P; Hu J; Jiang A; Chen H; Niu X; Zhou Y
    ACS Omega; 2022 Mar; 7(11):9642-9651. PubMed ID: 35350365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zinc sulfide quantum dots/zinc oxide nanospheres/bismuth-enriched bismuth oxyiodides as Z-scheme/type-II tandem heterojunctions for an efficient charge separation and boost solar-driven photocatalytic performance.
    Wang K; Xing Z; Du M; Zhang S; Li Z; Yang S; Pan K; Liao J; Zhou W
    J Colloid Interface Sci; 2021 Jun; 592():259-270. PubMed ID: 33662830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Efficiency of InP-Based Red Quantum Dot Light-Emitting Diodes.
    Li D; Kristal B; Wang Y; Feng J; Lu Z; Yu G; Chen Z; Li Y; Li X; Xu X
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):34067-34075. PubMed ID: 31441639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the effect of band alignment and surface states on photoinduced electron transfer from CuInS2/CdS core/shell quantum dots to TiO2 electrodes.
    Sun M; Zhu D; Ji W; Jing P; Wang X; Xiang W; Zhao J
    ACS Appl Mater Interfaces; 2013 Dec; 5(23):12681-8. PubMed ID: 24206570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compositional and electric field dependence of the dissociation of charge transfer excitons in alternating polyfluorene copolymer/fullerene blends.
    Veldman D; Ipek O; Meskers SC; Sweelssen J; Koetse MM; Veenstra SC; Kroon JM; van Bavel SS; Loos J; Janssen RA
    J Am Chem Soc; 2008 Jun; 130(24):7721-35. PubMed ID: 18494472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remote trap passivation in colloidal quantum dot bulk nano-heterojunctions and its effect in solution-processed solar cells.
    Rath AK; Pelayo Garcia de Arquer F; Stavrinadis A; Lasanta T; Bernechea M; Diedenhofen SL; Konstantatos G
    Adv Mater; 2014 Jul; 26(27):4741-7. PubMed ID: 24895324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Structure for InP/ZnS-Based Electroluminescence Device by Embedding the Emitters in the Electron-Dominating Interface.
    Wang Y; Chen Z; Wang T; Zhang H; Zhang H; Wang R; Ji W
    J Phys Chem Lett; 2020 Mar; 11(5):1835-1839. PubMed ID: 32077702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.