These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 33510428)
1. Synthetic photoplethysmography (PPG) of the radial artery through parallelized Monte Carlo and its correlation to body mass index (BMI). Boonya-Ananta T; Rodriguez AJ; Ajmal A; Du Le VN; Hansen AK; Hutcheson JD; Ramella-Roman JC Sci Rep; 2021 Jan; 11(1):2570. PubMed ID: 33510428 [TBL] [Abstract][Full Text] [Related]
2. Effects of different contacting pressure on the transfer function between finger photoplethysmographic and radial blood pressure waveforms. Hsiu H; Hsu CL; Wu TL Proc Inst Mech Eng H; 2011 Jun; 225(6):575-83. PubMed ID: 22034741 [TBL] [Abstract][Full Text] [Related]
3. Experimental feasibility study of estimation of the normalized central blood pressure waveform from radial photoplethysmogram. Zahedi E; Sohani V; Ali MA; Chellappan K; Beng GK J Healthc Eng; 2015; 6(1):121-44. PubMed ID: 25708380 [TBL] [Abstract][Full Text] [Related]
4. Monte Carlo simulation of the effect of melanin concentration on light-tissue interactions in transmittance and reflectance finger photoplethysmography. Al-Halawani R; Qassem M; Kyriacou PA Sci Rep; 2024 Apr; 14(1):8145. PubMed ID: 38584229 [TBL] [Abstract][Full Text] [Related]
5. Monte Carlo Analysis of Optical Interactions in Reflectance and Transmittance Finger Photoplethysmography. Chatterjee S; Kyriacou PA Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30769957 [TBL] [Abstract][Full Text] [Related]
6. A Computational Modeling and Simulation Workflow to Investigate the Impact of Patient-Specific and Device Factors on Hemodynamic Measurements from Non-Invasive Photoplethysmography. Fine J; McShane MJ; Coté GL; Scully CG Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36004994 [TBL] [Abstract][Full Text] [Related]
7. Comparison between reflection-mode photoplethysmography and arterial diameter change detected by ultrasound at the region of radial artery. Wang CZ; Zheng YP Blood Press Monit; 2010 Aug; 15(4):213-9. PubMed ID: 20410816 [TBL] [Abstract][Full Text] [Related]
8. Pulse wave registration from radial artery using photoplethysmographic method. Pilt K; Leier M; Silluta S; Koots K; Meigas K; Viigimaa M Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6425-8. PubMed ID: 26737763 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of blood pressure and baroreflex sensitivity by radial artery tonometry versus finger arteriolar photoplethysmography. Zion AS; Bartels MN; Wecht JM; Sloan RP; Downey JA; De Meersman RE Am J Hypertens; 2003 May; 16(5 Pt 1):371-4. PubMed ID: 12745198 [TBL] [Abstract][Full Text] [Related]
10. Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time. Li Y; Wang Z; Zhang L; Yang X; Song J Australas Phys Eng Sci Med; 2014 Jun; 37(2):367-76. PubMed ID: 24722801 [TBL] [Abstract][Full Text] [Related]
11. Hybrid cardiopulmonary model for analysis of valsalva maneuver with radial artery pulse. Hemalatha K; Suganthi L; Manivannan M Ann Biomed Eng; 2010 Oct; 38(10):3151-61. PubMed ID: 20499184 [TBL] [Abstract][Full Text] [Related]
13. The differences in waveform between photoplethysmography pulse wave and radial pulse wave in movement station. Li K; Zhang S; Yang L; Luo Z; Gu G Biomed Mater Eng; 2014; 24(6):2657-64. PubMed ID: 25226969 [TBL] [Abstract][Full Text] [Related]
14. Photoplethysmographic Time-Domain Heart Rate Measurement Algorithm for Resource-Constrained Wearable Devices and its Implementation. Wójcikowski M; Pankiewicz B Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32210210 [TBL] [Abstract][Full Text] [Related]
15. Investigating the origin of photoplethysmography using a multiwavelength Monte Carlo model. Chatterjee S; Budidha K; Kyriacou PA Physiol Meas; 2020 Sep; 41(8):084001. PubMed ID: 32585642 [TBL] [Abstract][Full Text] [Related]
16. Detecting cardiac states with wearable photoplethysmograms and implications for out-of-hospital cardiac arrest detection. Khalili M; Lingawi S; Hutton J; Fordyce CB; Christenson J; Shadgan B; Grunau B; Kuo C Sci Rep; 2024 Oct; 14(1):23185. PubMed ID: 39369015 [TBL] [Abstract][Full Text] [Related]
17. The advantages of wearable green reflected photoplethysmography. Maeda Y; Sekine M; Tamura T J Med Syst; 2011 Oct; 35(5):829-34. PubMed ID: 20703690 [TBL] [Abstract][Full Text] [Related]
18. Investigating optical path and differential pathlength factor in reflectance photoplethysmography for the assessment of perfusion. Chatterjee S; Abay TY; Phillips JP; Kyriacou PA J Biomed Opt; 2018 Jul; 23(7):1-11. PubMed ID: 29998648 [TBL] [Abstract][Full Text] [Related]
19. A new method to estimate arterial blood pressure using photoplethysmographic signal. Jeong IC; Ko JI; Hwang SO; Yoon HR Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4667-70. PubMed ID: 17945849 [TBL] [Abstract][Full Text] [Related]
20. Monte Carlo analysis of optical heart rate sensors in commercial wearables: the effect of skin tone and obesity on the photoplethysmography (PPG) signal. Ajmal ; Boonya-Ananta T; Rodriguez AJ; Du Le VN; Ramella-Roman JC Biomed Opt Express; 2021 Dec; 12(12):7445-7457. PubMed ID: 35003845 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]