These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 33510551)

  • 1. Recommended Practice for Thrust Measurement in Electric Propulsion Testing.
    Polk JE; Pancotti A; Haag T; King S; Walker M; Blakely J; Ziemer J
    J Propuls Power; 2017 May; 33(3):539-555. PubMed ID: 33510551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of inverted pendulum thrust stand with spring-shaped wire for high power electric thrusters.
    Yamasaki J; Nonaka M; Yokota S; Shimamura K
    Rev Sci Instrum; 2023 Mar; 94(3):034501. PubMed ID: 37012807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thrust stand for vertically oriented electric propulsion performance evaluation.
    Moeller T; Polzin KA
    Rev Sci Instrum; 2010 Nov; 81(11):115108. PubMed ID: 21133502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct measurement of 1-mN-class thrust and 100-s-class specific impulse for a CubeSat propulsion system.
    Asakawa J; Nishii K; Nakagawa Y; Koizumi H; Komurasaki K
    Rev Sci Instrum; 2020 Mar; 91(3):035116. PubMed ID: 32260002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interlaboratory validation of a hanging pendulum thrust balance for electric propulsion testing.
    Schwertheim A; Rosati Azevedo E; Liu G; Bosch Borràs E; Bianchi L; Knoll A
    Rev Sci Instrum; 2021 Mar; 92(3):034502. PubMed ID: 33820057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-contact thrust stand calibration method for repetitively pulsed electric thrusters.
    Wong AR; Toftul A; Polzin KA; Pearson JB
    Rev Sci Instrum; 2012 Feb; 83(2):025103. PubMed ID: 22380121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a cantilever beam thrust stand for electric propulsion thrusters.
    Zhang H; Li DT; Li H
    Rev Sci Instrum; 2020 Nov; 91(11):115104. PubMed ID: 33261444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulsed thrust measurements using electromagnetic calibration techniques.
    Tang H; Shi C; Zhang X; Zhang Z; Cheng J
    Rev Sci Instrum; 2011 Mar; 82(3):035118. PubMed ID: 21456799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-power, null-type, inverted pendulum thrust stand.
    Xu KG; Walker ML
    Rev Sci Instrum; 2009 May; 80(5):055103. PubMed ID: 19485530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of a torsional balance for thrust measurements of Hall effect and microwave-based space propulsion systems.
    Masillo S; Stubbing J; Swar K; Staab D; Garbayo A; Lucca Fabris A
    Rev Sci Instrum; 2022 Nov; 93(11):114501. PubMed ID: 36461544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A compound pendulum for thrust measurement of micro-Newton thruster.
    Xu H; Gao Y; Mao QB; Ye LW; Hu ZK; Zhang K; Song P; Li Q
    Rev Sci Instrum; 2022 Jun; 93(6):064501. PubMed ID: 35778050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A torsion balance for impulse and thrust measurements of micro-Newton thrusters.
    Yang YX; Tu LC; Yang SQ; Luo J
    Rev Sci Instrum; 2012 Jan; 83(1):015105. PubMed ID: 22299984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High precision micro-impulse measurements for micro-thrusters based on torsional pendulum and sympathetic resonance techniques.
    Zhang D; Wu J; Zhang R; Zhang H; He Z
    Rev Sci Instrum; 2013 Dec; 84(12):125113. PubMed ID: 24387474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sub-millinewton thrust stand and wireless power coupler for microwave-powered small satellite thrusters.
    Wachs BN; Jorns BA
    Rev Sci Instrum; 2022 Aug; 93(8):083507. PubMed ID: 36050119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a two-dimensional dual pendulum thrust stand for Hall thrusters.
    Nagao N; Yokota S; Komurasaki K; Arakawa Y
    Rev Sci Instrum; 2007 Nov; 78(11):115108. PubMed ID: 18052505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calibration methods for the simultaneous measurement of the impulse, mass loss, and average thrust of a pulsed plasma thruster.
    Yoshikawa T; Tsukizaki R; Kuninaka H
    Rev Sci Instrum; 2018 Sep; 89(9):095103. PubMed ID: 30278772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thrust stand based on a single point load cell for impulse measurements from plasma thrusters.
    Conde L; Lahoz MD; Grabulosa J; Hernández R; González J; Delgado M; Damba J
    Rev Sci Instrum; 2020 Feb; 91(2):023308. PubMed ID: 32113423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-axis thrust stand for the direct characterization of electrospray performance.
    Gilpin MR; McGehee WA; Arnold NI; Natisin MR; Holley ZA
    Rev Sci Instrum; 2022 Jun; 93(6):065102. PubMed ID: 35778016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A newly designed decoupling method for micro-Newton thrust measurement.
    Xu H; Mao Q; Gao Y; Wei L; Ding Y; Tu H; Song P; Hu Z; Li Q
    Rev Sci Instrum; 2023 Jan; 94(1):014504. PubMed ID: 36725612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Note: Precision balance for sub-miliNewton resolution direct thrust measurement.
    Karadag B; Cho S; Funaki I
    Rev Sci Instrum; 2018 Aug; 89(8):086108. PubMed ID: 30184648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.