These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33510630)

  • 1. Intrinsically Motivated Exploration of Learned Goal Spaces.
    Laversanne-Finot A; Péré A; Oudeyer PY
    Front Neurorobot; 2020; 14():555271. PubMed ID: 33510630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning a Set of Interrelated Tasks by Using a Succession of Motor Policies for a Socially Guided Intrinsically Motivated Learner.
    Duminy N; Nguyen SM; Duhaut D
    Front Neurorobot; 2018; 12():87. PubMed ID: 30670961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An End-to-End Deep Reinforcement Learning-Based Intelligent Agent Capable of Autonomous Exploration in Unknown Environments.
    Ramezani Dooraki A; Lee DJ
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30360397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Goal-related feedback guides motor exploration and redundancy resolution in human motor skill acquisition.
    Rohde M; Narioka K; Steil JJ; Klein LK; Ernst MO
    PLoS Comput Biol; 2019 Mar; 15(3):e1006676. PubMed ID: 30835770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Representation in natural and artificial agents: an embodied cognitive science perspective.
    Pfeifer R; Scheier C
    Z Naturforsch C J Biosci; 1998; 53(7-8):480-503. PubMed ID: 9755508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Head Turning Modulation System: An Active Multimodal Paradigm for Intrinsically Motivated Exploration of Unknown Environments.
    Cohen-Lhyver B; Argentieri S; Gas B
    Front Neurorobot; 2018; 12():60. PubMed ID: 30297995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning tactile skills through curious exploration.
    Pape L; Oddo CM; Controzzi M; Cipriani C; Förster A; Carrozza MC; Schmidhuber J
    Front Neurorobot; 2012; 6():6. PubMed ID: 22837748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Bayesian Developmental Approach to Robotic Goal-Based Imitation Learning.
    Chung MJ; Friesen AL; Fox D; Meltzoff AN; Rao RP
    PLoS One; 2015; 10(11):e0141965. PubMed ID: 26536366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Confidence-based progress-driven self-generated goals for skill acquisition in developmental robots.
    Ngo H; Luciw M; Förster A; Schmidhuber J
    Front Psychol; 2013; 4():833. PubMed ID: 24324448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. End-to-End Autonomous Exploration with Deep Reinforcement Learning and Intrinsic Motivation.
    Ruan X; Li P; Zhu X; Yu H; Yu N
    Comput Intell Neurosci; 2021; 2021():9945044. PubMed ID: 34956359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Know Your Body Through Intrinsic Goals.
    Mannella F; Santucci VG; Somogyi E; Jacquey L; O'Regan KJ; Baldassarre G
    Front Neurorobot; 2018; 12():30. PubMed ID: 30018547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning robotic manipulation skills with multiple semantic goals by conservative curiosity-motivated exploration.
    Han C; Peng Z; Liu Y; Tang J; Yu Y; Zhou Z
    Front Neurorobot; 2023; 17():1089270. PubMed ID: 36960195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feature Control as Intrinsic Motivation for Hierarchical Reinforcement Learning.
    Dilokthanakul N; Kaplanis C; Pawlowski N; Shanahan M
    IEEE Trans Neural Netw Learn Syst; 2019 Nov; 30(11):3409-3418. PubMed ID: 30714933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SOVEREIGN: An autonomous neural system for incrementally learning planned action sequences to navigate towards a rewarded goal.
    Gnadt W; Grossberg S
    Neural Netw; 2008 Jun; 21(5):699-758. PubMed ID: 17996419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A neural network-based exploratory learning and motor planning system for co-robots.
    Galbraith BV; Guenther FH; Versace M
    Front Neurorobot; 2015; 9():7. PubMed ID: 26257640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovering and Exploiting Sparse Rewards in a Learned Behavior Space.
    Paolo G; Coninx M; Laflaquière A; Doncieux S
    Evol Comput; 2024 Sep; 32(3):275-305. PubMed ID: 37793063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cognitive navigation based on nonuniform Gabor space sampling, unsupervised growing networks, and reinforcement learning.
    Arleo A; Smeraldi F; Gerstner W
    IEEE Trans Neural Netw; 2004 May; 15(3):639-52. PubMed ID: 15384552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical intrinsically motivated agent planning behavior with dreaming in grid environments.
    Dzhivelikian E; Latyshev A; Kuderov P; Panov AI
    Brain Inform; 2022 Apr; 9(1):8. PubMed ID: 35366128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incremental learning of skill collections based on intrinsic motivation.
    Metzen JH; Kirchner F
    Front Neurorobot; 2013; 7():11. PubMed ID: 23898265
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.