These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 33510758)
1. Future-Proofing Potato for Drought and Heat Tolerance by Overexpression of Hexokinase and SP6A. Lehretz GG; Sonnewald S; Lugassi N; Granot D; Sonnewald U Front Plant Sci; 2020; 11():614534. PubMed ID: 33510758 [TBL] [Abstract][Full Text] [Related]
2. Yield reduction caused by elevated temperatures and high nitrogen fertilization is mitigated by SP6A overexpression in potato (Solanum tuberosum L.). Koch L; Lehretz GG; Sonnewald U; Sonnewald S Plant J; 2024 Mar; 117(6):1702-1715. PubMed ID: 38334712 [TBL] [Abstract][Full Text] [Related]
3. Post-transcriptional Regulation of FLOWERING LOCUS T Modulates Heat-Dependent Source-Sink Development in Potato. Lehretz GG; Sonnewald S; Hornyik C; Corral JM; Sonnewald U Curr Biol; 2019 May; 29(10):1614-1624.e3. PubMed ID: 31056391 [TBL] [Abstract][Full Text] [Related]
4. Assimilate highway to sink organs - Physiological consequences of SP6A overexpression in transgenic potato (Solanum tuberosum L.). Lehretz GG; Sonnewald S; Sonnewald U J Plant Physiol; 2021 Nov; 266():153530. PubMed ID: 34610522 [TBL] [Abstract][Full Text] [Related]
5. Expressing the sweet potato orange gene in transgenic potato improves drought tolerance and marketable tuber production. Cho KS; Han EH; Kwak SS; Cho JH; Im JS; Hong SY; Sohn HB; Kim YH; Lee SW C R Biol; 2016; 339(5-6):207-213. PubMed ID: 27212605 [TBL] [Abstract][Full Text] [Related]
6. Ectopic expression of a hot pepper bZIP-like transcription factor in potato enhances drought tolerance without decreasing tuber yield. Moon SJ; Han SY; Kim DY; Yoon IS; Shin D; Byun MO; Kwon HB; Kim BG Plant Mol Biol; 2015 Nov; 89(4-5):421-31. PubMed ID: 26394867 [TBL] [Abstract][Full Text] [Related]
7. Expression of Lugassi N; Yadav BS; Egbaria A; Wolf D; Kelly G; Neuhaus E; Raveh E; Carmi N; Granot D Plants (Basel); 2019 Dec; 8(12):. PubMed ID: 31888275 [TBL] [Abstract][Full Text] [Related]
8. Improving Potato Stress Tolerance and Tuber Yield Under a Climate Change Scenario - A Current Overview. Dahal K; Li XQ; Tai H; Creelman A; Bizimungu B Front Plant Sci; 2019; 10():563. PubMed ID: 31139199 [TBL] [Abstract][Full Text] [Related]
9. X-Ray CT Phenotyping Reveals Bi-Phasic Growth Phases of Potato Tubers Exposed to Combined Abiotic Stress. Van Harsselaar JK; Claußen J; Lübeck J; Wörlein N; Uhlmann N; Sonnewald U; Gerth S Front Plant Sci; 2021; 12():613108. PubMed ID: 33859657 [TBL] [Abstract][Full Text] [Related]
10. Drought priming at seedling stage improves photosynthetic performance and yield of potato exposed to a short-term drought stress. Lv Z; Zhang H; Huang Y; Zhu L; Yang X; Wu L; Chen M; Wang H; Jing Q; Shen J; Fan Y; Xu W; Hou H; Zhu X J Plant Physiol; 2024 Jan; 292():154157. PubMed ID: 38091889 [TBL] [Abstract][Full Text] [Related]
11. Deciphering source and sink responses of potato plants (Solanum tuberosum L.) to elevated temperatures. Hastilestari BR; Lorenz J; Reid S; Hofmann J; Pscheidt D; Sonnewald U; Sonnewald S Plant Cell Environ; 2018 Nov; 41(11):2600-2616. PubMed ID: 29869794 [TBL] [Abstract][Full Text] [Related]
12. Mechanistic Concept of Physiological, Biochemical, and Molecular Responses of the Potato Crop to Heat and Drought Stress. Lal MK; Tiwari RK; Kumar A; Dey A; Kumar R; Kumar D; Jaiswal A; Changan SS; Raigond P; Dutt S; Luthra SK; Mandal S; Singh MP; Paul V; Singh B Plants (Basel); 2022 Oct; 11(21):. PubMed ID: 36365310 [TBL] [Abstract][Full Text] [Related]
13. Improving drought-, salinity-, and heat-tolerance in transgenic plants by co-overexpressing Arabidopsis vacuolar pyrophosphatase gene AVP1 and Larrea Rubisco activase gene RCA. Wijewardene I; Mishra N; Sun L; Smith J; Zhu X; Payton P; Shen G; Zhang H Plant Sci; 2020 Jul; 296():110499. PubMed ID: 32540017 [TBL] [Abstract][Full Text] [Related]
14. Sweet Potato as a Key Crop for Food Security under the Conditions of Global Climate Change: A Review. Sapakhova Z; Raissova N; Daurov D; Zhapar K; Daurova A; Zhigailov A; Zhambakin K; Shamekova M Plants (Basel); 2023 Jun; 12(13):. PubMed ID: 37447081 [TBL] [Abstract][Full Text] [Related]
15. Potato Response to Drought Stress: Physiological and Growth Basis. Gervais T; Creelman A; Li XQ; Bizimungu B; De Koeyer D; Dahal K Front Plant Sci; 2021; 12():698060. PubMed ID: 34456939 [TBL] [Abstract][Full Text] [Related]
16. Carbon partitioning mechanisms in POTATO under drought stress. Aliche EB; Theeuwen TPJM; Oortwijn M; Visser RGF; van der Linden CG Plant Physiol Biochem; 2020 Jan; 146():211-219. PubMed ID: 31756607 [TBL] [Abstract][Full Text] [Related]
17. Evaluating the Drought Tolerance of Seven Potato Varieties on Volcanic Ash Soils in a Medium-Term Trial. Martínez I; Muñoz M; Acuña I; Uribe M Front Plant Sci; 2021; 12():693060. PubMed ID: 34249064 [TBL] [Abstract][Full Text] [Related]
18. High Throughput Image-Based Phenotyping for Determining Morphological and Physiological Responses to Single and Combined Stresses in Potato. Abdelhakim LOA; Pleskačová B; Rodriguez-Granados NY; Sasidharan R; Perez-Borroto LS; Sonnewald S; Gruden K; Vothknecht UC; Teige M; Panzarová K J Vis Exp; 2024 Jun; (208):. PubMed ID: 38912820 [TBL] [Abstract][Full Text] [Related]
19. Transcriptome Profiling of the Potato (Solanum tuberosum L.) Plant under Drought Stress and Water-Stimulus Conditions. Gong L; Zhang H; Gan X; Zhang L; Chen Y; Nie F; Shi L; Li M; Guo Z; Zhang G; Song Y PLoS One; 2015; 10(5):e0128041. PubMed ID: 26010543 [TBL] [Abstract][Full Text] [Related]
20. Toward the Design of Potato Tolerant to Abiotic Stress. Campbell R; Ducreux LJM; Mellado-Ortega E; Hancock RD; Taylor MA Methods Mol Biol; 2021; 2354():387-399. PubMed ID: 34448171 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]