BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 33510888)

  • 21. Identifying essential proteins based on sub-network partition and prioritization by integrating subcellular localization information.
    Li M; Li W; Wu FX; Pan Y; Wang J
    J Theor Biol; 2018 Jun; 447():65-73. PubMed ID: 29571709
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prognostic biomarkers and therapeutic targets in oral squamous cell carcinoma: a study based on cross-database analysis.
    Yang W; Zhou W; Zhao X; Wang X; Duan L; Li Y; Niu L; Chen J; Zhang Y; Han Y; Fan D; Hong L
    Hereditas; 2021 Apr; 158(1):15. PubMed ID: 33892811
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of TP53 in the progression of pre-malignant and malignant oral mucosal lesions. A follow-up study of 144 patients.
    Ogmundsdóttir HM; Björnsson J; Holbrook WP
    J Oral Pathol Med; 2009 Aug; 38(7):565-71. PubMed ID: 19473450
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The important role of MDM2, RPL5, and TP53 in mycophenolic acid-induced cleft lip and palate.
    Lin Y; Song T; Ronde EM; Ma G; Cui H; Xu M
    Medicine (Baltimore); 2021 May; 100(21):e26101. PubMed ID: 34032749
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modulation of interaction of mutant TP53 and wild type BRCA1 by alkaloids: a computational approach towards targeting protein-protein interaction as a futuristic therapeutic intervention strategy for breast cancer impediment.
    Tiwari S; Awasthi M; Singh S; Pandey VP; Dwivedi UN
    J Biomol Struct Dyn; 2018 Oct; 36(13):3376-3387. PubMed ID: 28978265
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Animal model and bioinformatics analyses suggest the TIMP1/MMP9 axis as a potential biomarker in oral squamous cell carcinoma.
    Xu G; Wei J; Huangfu B; Gao J; Wang X; Xiao L; Xuan R; Chen Z; Song G
    Mol Carcinog; 2020 Nov; 59(11):1302-1316. PubMed ID: 33006223
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SCNrank: spectral clustering for network-based ranking to reveal potential drug targets and its application in pancreatic ductal adenocarcinoma.
    Liu E; Zhang ZZ; Cheng X; Liu X; Cheng L
    BMC Med Genomics; 2020 Apr; 13(Suppl 5):50. PubMed ID: 32241274
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification and Integrated Analysis of Key Biomarkers for Diagnosis and Prognosis of Non-Small Cell Lung Cancer.
    Liu X; Liu X; Li J; Ren F
    Med Sci Monit; 2019 Dec; 25():9280-9289. PubMed ID: 31805030
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integrated analysis of differentially expressed genes and pathways in triple‑negative breast cancer.
    Peng C; Ma W; Xia W; Zheng W
    Mol Med Rep; 2017 Mar; 15(3):1087-1094. PubMed ID: 28075450
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrated bioinformatics analysis reveals key candidate genes and pathways in breast cancer.
    Wang Y; Zhang Y; Huang Q; Li C
    Mol Med Rep; 2018 Jun; 17(6):8091-8100. PubMed ID: 29693125
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of the autophagy gene expression profile of pancreatic cancer based on autophagy-related protein microtubule-associated protein 1A/1B-light chain 3.
    Yang YH; Zhang YX; Gui Y; Liu JB; Sun JJ; Fan H
    World J Gastroenterol; 2019 May; 25(17):2086-2098. PubMed ID: 31114135
    [TBL] [Abstract][Full Text] [Related]  

  • 32. FN1, SPARC, and SERPINE1 are highly expressed and significantly related to a poor prognosis of gastric adenocarcinoma revealed by microarray and bioinformatics.
    Li L; Zhu Z; Zhao Y; Zhang Q; Wu X; Miao B; Cao J; Fei S
    Sci Rep; 2019 May; 9(1):7827. PubMed ID: 31127138
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Network-based identification of novel connections among apoptotic signaling pathways in cancer.
    Wang N; Xu HL; Zhao X; Wen X; Wang FT; Wang SY; Fu LL; Liu B; Bao JK
    Appl Biochem Biotechnol; 2012 Jun; 167(3):621-31. PubMed ID: 22581077
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potential therapeutic targets for oral cancer: ADM, TP53, EGFR, LYN, CTLA4, SKIL, CTGF, CD70.
    Bundela S; Sharma A; Bisen PS
    PLoS One; 2014; 9(7):e102610. PubMed ID: 25029526
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure-Based Analysis Reveals Cancer Missense Mutations Target Protein Interaction Interfaces.
    Engin HB; Kreisberg JF; Carter H
    PLoS One; 2016; 11(4):e0152929. PubMed ID: 27043210
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prevalence of p53 dysregulations in feline oral squamous cell carcinoma and non-neoplastic oral mucosa.
    Renzi A; De Bonis P; Morandi L; Lenzi J; Tinto D; Rigillo A; Bettini G; Bellei E; Sabattini S
    PLoS One; 2019; 14(4):e0215621. PubMed ID: 30998743
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multi-omics analysis profile oral tumor module clusters to reveal the potential pathogenic mechanism.
    Liu J; Zhao C; Yang S; Dong C
    Cell Mol Biol (Noisy-le-grand); 2020 Oct; 66(7):24-30. PubMed ID: 33287918
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oral lichen planus has a high rate of TP53 mutations. A study of oral mucosa in icelanD.
    Ogmundsdóttir HM; Hilmarsdóttir H; Astvaldsdóttir A; Jóhannsson JH; Holbrook WP
    Eur J Oral Sci; 2002 Jun; 110(3):192-8. PubMed ID: 12120703
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Longitudinal study of TP53 mutations in eight patients with potentially malignant oral mucosal disorders.
    Ogmundsdóttir HM; Hilmarsdóttir H; Björnsson J; Holbrook WP
    J Oral Pathol Med; 2009 Oct; 38(9):716-21. PubMed ID: 19473449
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The cancer-associated, gain-of-function TP53 variant P152Lp53 activates multiple signaling pathways implicated in tumorigenesis.
    Singh S; Kumar M; Kumar S; Sen S; Upadhyay P; Bhattacharjee S; M N; Tomar VS; Roy S; Dutt A; Kundu TK
    J Biol Chem; 2019 Sep; 294(38):14081-14095. PubMed ID: 31366730
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.