These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 33510890)
61. Limitations of the pulse-modulated technique for measuring the fluorescence characteristics of algae. Ting CS; Owens TG Plant Physiol; 1992 Sep; 100(1):367-73. PubMed ID: 16652970 [TBL] [Abstract][Full Text] [Related]
62. Major diffusion leaks of clamp-on leaf cuvettes still unaccounted: how erroneous are the estimates of Farquhar et al. model parameters? Rodeghiero M; Niinemets U; Cescatti A Plant Cell Environ; 2007 Aug; 30(8):1006-22. PubMed ID: 17617828 [TBL] [Abstract][Full Text] [Related]
63. A functional-structural plant model that simulates whole- canopy gas exchange of grapevine plants (Vitis vinifera L.) under different training systems. Prieto JA; Louarn G; Perez Peña J; Ojeda H; Simonneau T; Lebon E Ann Bot; 2020 Sep; 126(4):647-660. PubMed ID: 31837221 [TBL] [Abstract][Full Text] [Related]
64. Effects of bisphenol A on growth, photosynthesis and chlorophyll fluorescence in above-ground organs of soybean seedlings. Qiu Z; Wang L; Zhou Q Chemosphere; 2013 Jan; 90(3):1274-80. PubMed ID: 23123119 [TBL] [Abstract][Full Text] [Related]
65. An Automated Comparative Observation System for Sun-Induced Chlorophyll Fluorescence of Vegetation Canopies. Zhou X; Liu Z; Xu S; Zhang W; Wu J Sensors (Basel); 2016 May; 16(6):. PubMed ID: 27240371 [TBL] [Abstract][Full Text] [Related]
66. Photosynthetic acclimation to light in woody and herbaceous species: a comparison of leaf structure, pigment content and chlorophyll fluorescence characteristics measured in the field. Hallik L; Niinemets U; Kull O Plant Biol (Stuttg); 2012 Jan; 14(1):88-99. PubMed ID: 21972867 [TBL] [Abstract][Full Text] [Related]
67. Chlorophyll a fluorescence illuminates a path connecting plant molecular biology to Earth-system science. Porcar-Castell A; Malenovský Z; Magney T; Van Wittenberghe S; Fernández-Marín B; Maignan F; Zhang Y; Maseyk K; Atherton J; Albert LP; Robson TM; Zhao F; Garcia-Plazaola JI; Ensminger I; Rajewicz PA; Grebe S; Tikkanen M; Kellner JR; Ihalainen JA; Rascher U; Logan B Nat Plants; 2021 Aug; 7(8):998-1009. PubMed ID: 34373605 [TBL] [Abstract][Full Text] [Related]
68. [Measuring and calculating methods of plant mesophyll conductance: A review.]. Zhu K; Yuan FH; Guan X; Wu JB; Wang AZ Ying Yong Sheng Tai Xue Bao; 2019 May; 30(5):1772-1782. PubMed ID: 31107034 [TBL] [Abstract][Full Text] [Related]
69. Modelling non-steady-state isotope enrichment of leaf water in a gas-exchange cuvette environment. Song X; Simonin KA; Loucos KE; Barbour MM Plant Cell Environ; 2015 Dec; 38(12):2618-28. PubMed ID: 25993893 [TBL] [Abstract][Full Text] [Related]
70. Lateral diffusion of CO2 from shaded to illuminated leaf parts affects photosynthesis inside homobaric leaves. Pieruschka R; Schurr U; Jensen M; Wolff WF; Jahnke S New Phytol; 2006; 169(4):779-87. PubMed ID: 16441758 [TBL] [Abstract][Full Text] [Related]
71. Dynamic response of plant chlorophyll fluorescence to light, water and nutrient availability. Cendrero-Mateo MP; Carmo-Silva AE; Porcar-Castell A; Hamerlynck EP; Papuga SA; Moran MS Funct Plant Biol; 2015 Jul; 42(8):746-757. PubMed ID: 32480718 [TBL] [Abstract][Full Text] [Related]
73. Electron transport efficiency at opposite leaf sides: effect of vertical distribution of leaf angle, structure, chlorophyll content and species in a forest canopy. Mänd P; Hallik L; Peñuelas J; Kull O Tree Physiol; 2013 Feb; 33(2):202-10. PubMed ID: 23185067 [TBL] [Abstract][Full Text] [Related]
74. Leaf gas exchange, chlorophyll fluorescence and pigment indexes of Eugenia uniflora L. in response to changes in light intensity and soil flooding. Mielke MS; Schaffer B Tree Physiol; 2010 Jan; 30(1):45-55. PubMed ID: 19923194 [TBL] [Abstract][Full Text] [Related]
75. Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C photosynthesis model: a critical appraisal and a new integrated approach applied to leaves in a wheat (Triticum aestivum) canopy. Yin X; Struik PC; Romero P; Harbinson J; Evers JB; VAN DER Putten PE; Vos J Plant Cell Environ; 2009 May; 32(5):448-64. PubMed ID: 19183300 [TBL] [Abstract][Full Text] [Related]
76. Seasonal photosynthetic gas exchange and leaf reflectance characteristics of male and female cottonwoods in a riparian woodland. Letts MG; Phelan CA; Johnson DR; Rood SB Tree Physiol; 2008 Jul; 28(7):1037-48. PubMed ID: 18450568 [TBL] [Abstract][Full Text] [Related]
77. Comparing two measures of leaf photorespiration rate across a wide range of light intensities. Ye ZP; Liu YG; Kang HJ; Duan HL; Chen XM; Zhou SX J Plant Physiol; 2019 Sep; 240():153002. PubMed ID: 31254740 [TBL] [Abstract][Full Text] [Related]
78. A Monte Carlo study of the chlorophyll fluorescence emission and its effect on the leaf spectral reflectance and transmittance under various conditions. Susila P; Naus J Photochem Photobiol Sci; 2007 Aug; 6(8):894-902. PubMed ID: 17668120 [TBL] [Abstract][Full Text] [Related]
79. [Effects of elevated atmospheric CO2 concentration on mung bean leaf photosynthesis and chlorophyll fluorescence parameters]. Hao XY; Han X; Li P; Yang HB; Lin ED Ying Yong Sheng Tai Xue Bao; 2011 Oct; 22(10):2776-80. PubMed ID: 22263487 [TBL] [Abstract][Full Text] [Related]