These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
325 related articles for article (PubMed ID: 33510954)
1. Central Serous Chorioretinopathy Analyzed by Multimodal Imaging. Han L; de Carvalho JRL; Parmann R; Tezel TH; Chang S; Sharma T; Sparrow JR Transl Vis Sci Technol; 2021 Jan; 10(1):15. PubMed ID: 33510954 [TBL] [Abstract][Full Text] [Related]
2. Patterns and Intensities of Near-Infrared and Short-Wavelength Fundus Autofluorescence in Choroideremia Probands and Carriers. Paavo M; Carvalho JRL; Lee W; Sengillo JD; Tsang SH; Sparrow JR Invest Ophthalmol Vis Sci; 2019 Sep; 60(12):3752-3761. PubMed ID: 31499530 [TBL] [Abstract][Full Text] [Related]
3. Multimodal Imaging in Best Vitelliform Macular Dystrophy. Lima de Carvalho JR; Paavo M; Chen L; Chiang J; Tsang SH; Sparrow JR Invest Ophthalmol Vis Sci; 2019 May; 60(6):2012-2022. PubMed ID: 31070670 [TBL] [Abstract][Full Text] [Related]
4. Near-infrared and short-wavelength autofluorescence in resolved central serous chorioretinopathy: association with outer retinal layer abnormalities. Kim SK; Kim SW; Oh J; Huh K Am J Ophthalmol; 2013 Jul; 156(1):157-164.e2. PubMed ID: 23601655 [TBL] [Abstract][Full Text] [Related]
5. [Pathophysiology of macular diseases--morphology and function]. Iida T Nippon Ganka Gakkai Zasshi; 2011 Mar; 115(3):238-74; discussion 275. PubMed ID: 21476310 [TBL] [Abstract][Full Text] [Related]
6. QUANTITATIVE AUTOFLUORESCENCE IN CENTRAL SEROUS CHORIORETINOPATHY. Weber C; Schaetzle LS; Stasik I; von der Emde L; Holz FG; Liegl R Retina; 2024 May; 44(5):844-851. PubMed ID: 38147686 [TBL] [Abstract][Full Text] [Related]
7. Spectral-Domain Optical Coherence Tomography Is More Sensitive for Hydroxychloroquine-Related Structural Abnormalities Than Short-Wavelength and Near-Infrared Autofluorescence. Jauregui R; Parmann R; Nuzbrokh Y; Tsang SH; Sparrow JR Transl Vis Sci Technol; 2020 Aug; 9(9):8. PubMed ID: 32879764 [TBL] [Abstract][Full Text] [Related]
8. Acute central serous chorioretinopathy: a correlation study between fundus autofluorescence and spectral-domain OCT. Iacono P; Battaglia PM; Papayannis A; La Spina C; Varano M; Bandello F Graefes Arch Clin Exp Ophthalmol; 2015 Nov; 253(11):1889-97. PubMed ID: 25563727 [TBL] [Abstract][Full Text] [Related]
9. Mutations in GPR143/OA1 and ABCA4 Inform Interpretations of Short-Wavelength and Near-Infrared Fundus Autofluorescence. Paavo M; Zhao J; Kim HJ; Lee W; Zernant J; Cai C; Allikmets R; Tsang SH; Sparrow JR Invest Ophthalmol Vis Sci; 2018 May; 59(6):2459-2469. PubMed ID: 29847651 [TBL] [Abstract][Full Text] [Related]
10. Fundus autofluorescence in central serous chorioretinopathy: association with spectral-domain optical coherence tomography and fluorescein angiography. Zhang P; Wang HY; Zhang ZF; Sun DJ; Zhu JT; Li J; Wang YS Int J Ophthalmol; 2015; 8(5):1003-7. PubMed ID: 26558217 [TBL] [Abstract][Full Text] [Related]
11. Photoreceptor cells as a source of fundus autofluorescence in recessive Stargardt disease. Paavo M; Lee W; Allikmets R; Tsang S; Sparrow JR J Neurosci Res; 2019 Jan; 97(1):98-106. PubMed ID: 29701254 [TBL] [Abstract][Full Text] [Related]
12. FUNDUS AUTOFLUORESCENCE LIFETIMES AND CENTRAL SEROUS CHORIORETINOPATHY. Dysli C; Berger L; Wolf S; Zinkernagel MS Retina; 2017 Nov; 37(11):2151-2161. PubMed ID: 28099314 [TBL] [Abstract][Full Text] [Related]
13. Fundus autofluorescence findings in central serous chorioretinopathy using two different confocal scanning laser ophthalmoscopes: correlation with functional and structural status. Shin JY; Choi HJ; Lee J; Choi M; Chung B; Byeon SH Graefes Arch Clin Exp Ophthalmol; 2016 Aug; 254(8):1537-1544. PubMed ID: 26690973 [TBL] [Abstract][Full Text] [Related]
14. Correlations among near-infrared and short-wavelength autofluorescence and spectral-domain optical coherence tomography in recessive Stargardt disease. Duncker T; Marsiglia M; Lee W; Zernant J; Tsang SH; Allikmets R; Greenstein VC; Sparrow JR Invest Ophthalmol Vis Sci; 2014 Oct; 55(12):8134-43. PubMed ID: 25342616 [TBL] [Abstract][Full Text] [Related]
15. Choroideremia Carriers: Dark-Adapted Perimetry and Retinal Structures. Parmann R; Greenstein VC; Tsang SH; Sparrow JR Invest Ophthalmol Vis Sci; 2022 Jul; 63(8):4. PubMed ID: 35816046 [TBL] [Abstract][Full Text] [Related]
17. Insights Into PROM1-Macular Disease Using Multimodal Imaging. Paavo M; Lee W; Parmann R; Lima de Carvalho JR; Zernant J; Tsang SH; Allikmets R; Sparrow JR Invest Ophthalmol Vis Sci; 2023 Apr; 64(4):27. PubMed ID: 37093133 [TBL] [Abstract][Full Text] [Related]
18. Infrared fundus autofluorescence and central serous chorioretinopathy. Sekiryu T; Iida T; Maruko I; Saito K; Kondo T Invest Ophthalmol Vis Sci; 2010 Oct; 51(10):4956-62. PubMed ID: 20435599 [TBL] [Abstract][Full Text] [Related]
19. Intraretinal Correlates of Reticular Pseudodrusen Revealed by Autofluorescence and En Face OCT. Paavo M; Lee W; Merriam J; Bearelly S; Tsang S; Chang S; Sparrow JR Invest Ophthalmol Vis Sci; 2017 Sep; 58(11):4769-4777. PubMed ID: 28973322 [TBL] [Abstract][Full Text] [Related]
20. Quantitative fundus autofluorescence and optical coherence tomography in best vitelliform macular dystrophy. Duncker T; Greenberg JP; Ramachandran R; Hood DC; Smith RT; Hirose T; Woods RL; Tsang SH; Delori FC; Sparrow JR Invest Ophthalmol Vis Sci; 2014 Mar; 55(3):1471-82. PubMed ID: 24526438 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]