These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33511017)

  • 1. Magnetic Resonance Imaging-Compatible Optically Powered Miniature Wireless Modular Lorentz Force Actuators.
    Mutlu S; Yasa O; Erin O; Sitti M
    Adv Sci (Weinh); 2021 Jan; 8(2):2002948. PubMed ID: 33511017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat-Mitigated Design and Lorentz Force-Based Steering of an MRI-Driven Microcatheter toward Minimally Invasive Surgery.
    Phelan MF; Tiryaki ME; Lazovic J; Gilbert H; Sitti M
    Adv Sci (Weinh); 2022 Apr; 9(10):e2105352. PubMed ID: 35112810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wireless MRI-Powered Reversible Orientation-Locking Capsule Robot.
    Erin O; Boyvat M; Lazovic J; Tiryaki ME; Sitti M
    Adv Sci (Weinh); 2021 Jul; 8(13):2100463. PubMed ID: 35478933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel 2-DOF Lorentz Force Actuator for the Modular Magnetic Suspension Platform.
    Yang F; Zhao Y; Mu X; Zhang W; Jiang L; Yue H; Liu R
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32764346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wireless Miniature Magnetic Phase-Change Soft Actuators.
    Tang Y; Li M; Wang T; Dong X; Hu W; Sitti M
    Adv Mater; 2022 Oct; 34(40):e2204185. PubMed ID: 35975467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NITINOL-based actuator for device control even in high-field MRI environment.
    Kalmar M; Boese A; Maldonado I; Landes R; Friebe M
    Med Devices (Auckl); 2019; 12():285-296. PubMed ID: 31920406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wireless Acoustic-Surface Actuators for Miniaturized Endoscopes.
    Qiu T; Adams F; Palagi S; Melde K; Mark A; Wetterauer U; Miernik A; Fischer P
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):42536-42543. PubMed ID: 29148713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an MRI-powered robotic system for cryoablation.
    Ouchi R; Saotome K; Matsushita A; Suzuki K
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1186-9. PubMed ID: 26736478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MRI-compatibility study of a PET-insert based on a low-profile detection front-end with submillimeter spatial resolution.
    Moghadam N; Bouchard J; Espagnet R; Fontaine R; Lecomte R
    Med Phys; 2020 Sep; 47(9):4396-4406. PubMed ID: 32445586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MRI-powered Actuators for Robotic Interventions.
    Vartholomeos P; Qin L; Dupont PE
    Rep U S; 2011 Sep; ():4508-4515. PubMed ID: 22287082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical simulations of an integrated radio-frequency/wireless coil design for simultaneous acquisition and wireless transfer of magnetic resonance imaging data.
    Overson DK; Bresticker J; Willey D; Robb F; Song AW; Truong TK; Darnell D
    Phys Med Biol; 2023 Jun; 68(12):. PubMed ID: 37192635
    [No Abstract]   [Full Text] [Related]  

  • 12. Miniature coiled artificial muscle for wireless soft medical devices.
    Li M; Tang Y; Soon RH; Dong B; Hu W; Sitti M
    Sci Adv; 2022 Mar; 8(10):eabm5616. PubMed ID: 35275717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic guidewire steering at ultrahigh magnetic fields.
    Tiryaki ME; Elmacıoğlu YG; Sitti M
    Sci Adv; 2023 Apr; 9(17):eadg6438. PubMed ID: 37126547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "MRI Stealth" robot for prostate interventions.
    Stoianovici D; Song D; Petrisor D; Ursu D; Mazilu D; Muntener M; Schar M; Patriciu A
    Minim Invasive Ther Allied Technol; 2007; 16(4):241-8. PubMed ID: 17763098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the MRI compatibility of PET detectors modules for organ-specific inserts in a 3T and 7T MRI scanner.
    Schmidt FP; Allen MS; Ladebeck R; Breuer J; Judenhofer M; Schmand M; Catana C; Pichler BJ
    Med Phys; 2024 Feb; 51(2):991-1006. PubMed ID: 38150577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of a 6-DoF Parallel Robotic Platform for MRI Applications.
    Musa M; Sengupta S; Chen Y
    J Med Robot Res; 2022; 7(2-3):. PubMed ID: 37614779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid Soft-Rigid Actuators for Minimally Invasive Surgery.
    Paternò L; Tortora G; Menciassi A
    Soft Robot; 2018 Oct; ():. PubMed ID: 30281418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and validation of an MRI-compatible mechatronic system for needle delivery to localized prostate cancer.
    Knull E; Bax JS; Park CKS; Tessier D; Fenster A
    Med Phys; 2021 Sep; 48(9):5283-5299. PubMed ID: 34131933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wireless Power Transfer to Electrothermal Liquid Crystal Elastomer Actuators.
    Zhang H; Yang X; Valenzuela C; Chen Y; Yang Y; Ma S; Wang L; Feng W
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):27195-27205. PubMed ID: 37227697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wireless displacement sensing of micromachined spiral-coil actuator using resonant frequency tracking.
    Ali MS; AbuZaiter A; Schlosser C; Bycraft B; Takahata K
    Sensors (Basel); 2014 Jul; 14(7):12399-409. PubMed ID: 25014100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.