BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 33511206)

  • 1. Elucidation of the Genomic-Epigenomic Interaction Landscape of Aggressive Prostate Cancer.
    Kumar Mamidi TK; Wu J; Hicks C
    Biomed Res Int; 2021; 2021():6641429. PubMed ID: 33511206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating germline and somatic variation information using genomic data for the discovery of biomarkers in prostate cancer.
    Mamidi TKK; Wu J; Hicks C
    BMC Cancer; 2019 Mar; 19(1):229. PubMed ID: 30871495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deconvolution of the Genomic and Epigenomic Interaction Landscape of Triple-Negative Breast Cancer.
    Wu J; Mamidi TKK; Zhang L; Hicks C
    Cancers (Basel); 2019 Oct; 11(11):. PubMed ID: 31683572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping the Germline and Somatic Mutation Interaction Landscape in Indolent and Aggressive Prostate Cancers.
    Mamidi TKK; Wu J; Hicks C
    J Oncol; 2019; 2019():4168784. PubMed ID: 31814827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions between Germline and Somatic Mutated Genes in Aggressive Prostate Cancer.
    Mamidi TKK; Wu J; Hicks C
    Prostate Cancer; 2019; 2019():4047680. PubMed ID: 31007957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrating Germline and Somatic Mutation Information for the Discovery of Biomarkers in Triple-Negative Breast Cancer.
    Wu J; Mamidi TKK; Zhang L; Hicks C
    Int J Environ Res Public Health; 2019 Mar; 16(6):. PubMed ID: 30909550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unraveling the Genomic-Epigenomic Interaction Landscape in Triple Negative and Non-Triple Negative Breast Cancer.
    Wu J; Mamidi TKK; Zhang L; Hicks C
    Cancers (Basel); 2020 Jun; 12(6):. PubMed ID: 32545594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of lncRNAs in prostate cancer development and progression.
    Weiss M; Plass C; Gerhauser C
    Biol Chem; 2014 Nov; 395(11):1275-90. PubMed ID: 25153594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delineation of the Germline and Somatic Mutation Interaction Landscape in Triple-Negative and Non-Triple-Negative Breast Cancer.
    Wu J; Mamidi TKK; Zhang L; Hicks C
    Int J Genomics; 2020; 2020():2641370. PubMed ID: 32724790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Germline BRCA2 mutations drive prostate cancers with distinct evolutionary trajectories.
    Taylor RA; Fraser M; Livingstone J; Espiritu SM; Thorne H; Huang V; Lo W; Shiah YJ; Yamaguchi TN; Sliwinski A; Horsburgh S; Meng A; Heisler LE; Yu N; Yousif F; Papargiris M; Lawrence MG; Timms L; Murphy DG; Frydenberg M; Hopkins JF; Bolton D; Clouston D; McPherson JD; van der Kwast T; Boutros PC; Risbridger GP; Bristow RG
    Nat Commun; 2017 Jan; 8():13671. PubMed ID: 28067867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of the Androgen Receptor, ETV1, and PTEN Pathways in Mouse Prostate Varies with Pathological Stage and Predicts Cancer Progression.
    Higgins J; Brogley M; Palanisamy N; Mehra R; Ittmann MM; Li JZ; Tomlins SA; Robins DM
    Horm Cancer; 2015 Jun; 6(2-3):67-86. PubMed ID: 25631336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative analysis of a panel of gene expression in prostate cancer--with emphasis on NPY expression analysis.
    Liu AJ; Furusato B; Ravindranath L; Chen YM; Srikantan V; McLeod DG; Petrovics G; Srivastava S
    J Zhejiang Univ Sci B; 2007 Dec; 8(12):853-9. PubMed ID: 18257117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PTEN genomic deletion predicts prostate cancer recurrence and is associated with low AR expression and transcriptional activity.
    Choucair K; Ejdelman J; Brimo F; Aprikian A; Chevalier S; Lapointe J
    BMC Cancer; 2012 Nov; 12():543. PubMed ID: 23171135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Androgen receptor mutations and polymorphisms in African American prostate cancer.
    Koochekpour S; Buckles E; Shourideh M; Hu S; Chandra D; Zabaleta J; Attwood K
    Int J Biol Sci; 2014; 10(6):643-51. PubMed ID: 24948877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide germline correlates of the epigenetic landscape of prostate cancer.
    Houlahan KE; Shiah YJ; Gusev A; Yuan J; Ahmed M; Shetty A; Ramanand SG; Yao CQ; Bell C; O'Connor E; Huang V; Fraser M; Heisler LE; Livingstone J; Yamaguchi TN; Rouette A; Foucal A; Espiritu SMG; Sinha A; Sam M; Timms L; Johns J; Wong A; Murison A; Orain M; Picard V; Hovington H; Bergeron A; Lacombe L; Lupien M; Fradet Y; Têtu B; McPherson JD; Pasaniuc B; Kislinger T; Chua MLK; Pomerantz MM; van der Kwast T; Freedman ML; Mani RS; He HH; Bristow RG; Boutros PC
    Nat Med; 2019 Oct; 25(10):1615-1626. PubMed ID: 31591588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prostate cancer reactivates developmental epigenomic programs during metastatic progression.
    Pomerantz MM; Qiu X; Zhu Y; Takeda DY; Pan W; Baca SC; Gusev A; Korthauer KD; Severson TM; Ha G; Viswanathan SR; Seo JH; Nguyen HM; Zhang B; Pasaniuc B; Giambartolomei C; Alaiwi SA; Bell CA; O'Connor EP; Chabot MS; Stillman DR; Lis R; Font-Tello A; Li L; Cejas P; Bergman AM; Sanders J; van der Poel HG; Gayther SA; Lawrenson K; Fonseca MAS; Reddy J; Corona RI; Martovetsky G; Egan B; Choueiri T; Ellis L; Garraway IP; Lee GM; Corey E; Long HW; Zwart W; Freedman ML
    Nat Genet; 2020 Aug; 52(8):790-799. PubMed ID: 32690948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-free DNA profiling of metastatic prostate cancer reveals microsatellite instability, structural rearrangements and clonal hematopoiesis.
    Mayrhofer M; De Laere B; Whitington T; Van Oyen P; Ghysel C; Ampe J; Ost P; Demey W; Hoekx L; Schrijvers D; Brouwers B; Lybaert W; Everaert E; De Maeseneer D; Strijbos M; Bols A; Fransis K; Oeyen S; van Dam PJ; Van den Eynden G; Rutten A; Aly M; Nordström T; Van Laere S; Rantalainen M; Rajan P; Egevad L; Ullén A; Yachnin J; Dirix L; Grönberg H; Lindberg J
    Genome Med; 2018 Nov; 10(1):85. PubMed ID: 30458854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of transcription factor co-regulators that drive prostate cancer progression.
    Siddappa M; Wani SA; Long MD; Leach DA; Mathé EA; Bevan CL; Campbell MJ
    Sci Rep; 2020 Nov; 10(1):20332. PubMed ID: 33230156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity.
    Beltran H; Yelensky R; Frampton GM; Park K; Downing SR; MacDonald TY; Jarosz M; Lipson D; Tagawa ST; Nanus DM; Stephens PJ; Mosquera JM; Cronin MT; Rubin MA
    Eur Urol; 2013 May; 63(5):920-6. PubMed ID: 22981675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interplay between genomic alterations and androgen receptor signaling during prostate cancer development and progression.
    Nyquist MD; Dehm SM
    Horm Cancer; 2013 Apr; 4(2):61-9. PubMed ID: 23307762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.