These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 33511302)

  • 21. Structures and Dynamics of Native-State Transmembrane Protein Targets and Bound Lipids.
    Overduin M; Trieber C; Prosser RS; Picard LP; Sheff JG
    Membranes (Basel); 2021 Jun; 11(6):. PubMed ID: 34204456
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-particle cryo-EM studies of transmembrane proteins in SMA copolymer nanodiscs.
    Sun C; Gennis RB
    Chem Phys Lipids; 2019 Jul; 221():114-119. PubMed ID: 30940443
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detergent-Free Membrane Protein Purification.
    Rothnie AJ
    Methods Mol Biol; 2016; 1432():261-7. PubMed ID: 27485341
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reconstitution of the Rhodopsin-Transducin Complex into Lipid Nanodiscs.
    Gao Y; Erickson JW; Cerione RA; Ramachandran S
    Methods Mol Biol; 2019; 2009():317-324. PubMed ID: 31152414
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Probing Membrane Protein Assembly into Nanodiscs by In Situ Dynamic Light Scattering: A
    Reis RI; Moraes I
    Biology (Basel); 2020 Nov; 9(11):. PubMed ID: 33202740
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bacillus subtilis MraY in detergent-free system of nanodiscs wrapped by styrene-maleic acid copolymers.
    Liu Y; Moura ECCM; Dörr JM; Scheidelaar S; Heger M; Egmond MR; Killian JA; Mohammadi T; Breukink E
    PLoS One; 2018; 13(11):e0206692. PubMed ID: 30395652
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The nanodisc: a novel tool for membrane protein studies.
    Borch J; Hamann T
    Biol Chem; 2009 Aug; 390(8):805-14. PubMed ID: 19453280
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterizing the structure of styrene-maleic acid copolymer-lipid nanoparticles (SMALPs) using RAFT polymerization for membrane protein spectroscopic studies.
    Harding BD; Dixit G; Burridge KM; Sahu ID; Dabney-Smith C; Edelmann RE; Konkolewicz D; Lorigan GA
    Chem Phys Lipids; 2019 Jan; 218():65-72. PubMed ID: 30528635
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of the direct interaction between KcsA-Kv1.3 and its inhibitors.
    Xu H; Hill JJ; Michelsen K; Yamane H; Kurzeja RJ; Tam T; Isaacs RJ; Shen F; Tagari P
    Biochim Biophys Acta; 2015 Oct; 1848(10 Pt A):1974-80. PubMed ID: 26074010
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enrichment of Membrane Proteins for Downstream Analysis Using Styrene Maleic Acid Lipid Particles (SMALPs) Extraction.
    Dirnberger B; Korona D; Popovic R; Deery MJ; Barber H; Russell S; Lilley KS
    Bio Protoc; 2023 Aug; 13(15):e4728. PubMed ID: 37575399
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sequence-specific dimerization of a transmembrane helix in amphipol A8-35.
    Stangl M; Unger S; Keller S; Schneider D
    PLoS One; 2014; 9(10):e110970. PubMed ID: 25347769
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lipid Nanodiscs as a Tool for High-Resolution Structure Determination of Membrane Proteins by Single-Particle Cryo-EM.
    Efremov RG; Gatsogiannis C; Raunser S
    Methods Enzymol; 2017; 594():1-30. PubMed ID: 28779836
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lipid-protein nanodiscs as reference medium in detergent screening for high-resolution NMR studies of integral membrane proteins.
    Shenkarev ZO; Lyukmanova EN; Paramonov AS; Shingarova LN; Chupin VV; Kirpichnikov MP; Blommers MJ; Arseniev AS
    J Am Chem Soc; 2010 Apr; 132(16):5628-9. PubMed ID: 20356311
    [TBL] [Abstract][Full Text] [Related]  

  • 34. From Nanodiscs to Isotropic Bicelles: A Procedure for Solution Nuclear Magnetic Resonance Studies of Detergent-Sensitive Integral Membrane Proteins.
    Laguerre A; Löhr F; Henrich E; Hoffmann B; Abdul-Manan N; Connolly PJ; Perozo E; Moore JM; Bernhard F; Dötsch V
    Structure; 2016 Oct; 24(10):1830-1841. PubMed ID: 27618661
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chemical Additives Enable Native Mass Spectrometry Measurement of Membrane Protein Oligomeric State within Intact Nanodiscs.
    Keener JE; Zambrano DE; Zhang G; Zak CK; Reid DJ; Deodhar BS; Pemberton JE; Prell JS; Marty MT
    J Am Chem Soc; 2019 Jan; 141(2):1054-1061. PubMed ID: 30586296
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of hydrophobic alkyl sidechains on size and solution behaviors of nanodiscs formed by alternating styrene maleamic copolymer.
    Esmaili M; Acevedo-Morantes C; Wille H; Overduin M
    Biochim Biophys Acta Biomembr; 2020 Oct; 1862(10):183360. PubMed ID: 32454010
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Memtein: The fundamental unit of membrane-protein structure and function.
    Overduin M; Esmaili M
    Chem Phys Lipids; 2019 Jan; 218():73-84. PubMed ID: 30508515
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanodiscs and Solution NMR: preparation, application and challenges.
    Puthenveetil R; Nguyen K; Vinogradova O
    Nanotechnol Rev; 2017 Feb; 6(1):111-126. PubMed ID: 28373928
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Beyond detergent micelles: The advantages and applications of non-micellar and lipid-based membrane mimetics for solution-state NMR.
    Klöpfer K; Hagn F
    Prog Nucl Magn Reson Spectrosc; 2019; 114-115():271-283. PubMed ID: 31779883
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanodiscs and Mass Spectrometry: Making Membranes Fly.
    Marty MT
    Int J Mass Spectrom; 2020 Dec; 458():. PubMed ID: 33100891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.