BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 3351134)

  • 1. Anisotropy of the ultrasonic backscatter of myocardial tissue: II. Measurements in vivo.
    Madaras EI; Perez J; Sobel BE; Mottley JG; Miller JG
    J Acoust Soc Am; 1988 Feb; 83(2):762-9. PubMed ID: 3351134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural remodeling of human myocardial tissue after infarction. Quantification with ultrasonic backscatter.
    Wickline SA; Verdonk ED; Wong AK; Shepard RK; Miller JG
    Circulation; 1992 Jan; 85(1):259-68. PubMed ID: 1728457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anisotropy of the ultrasonic backscatter of myocardial tissue: I. Theory and measurements in vitro.
    Mottley JG; Miller JG
    J Acoust Soc Am; 1988 Feb; 83(2):755-61. PubMed ID: 3351133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relation of ultrasonic backscatter and acoustic propagation properties to myofibrillar length and myocardial thickness.
    O'Brien PD; O'Brien WD; Rhyne TL; Warltier DC; Sagar KB
    Circulation; 1995 Jan; 91(1):171-5. PubMed ID: 7805199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of coronary artery occlusion and reperfusion on cardiac cycle-dependent variation of myocardial ultrasonic backscatter.
    Glueck RM; Mottley JG; Miller JG; Sobel BE; Pérez JE
    Circ Res; 1985 May; 56(5):683-9. PubMed ID: 3888435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anisotropy of apparent backscatter in the short-axis view of mouse hearts.
    Holland MR; Kovacs A; Posdamer SH; Wallace KD; Miller JG
    Ultrasound Med Biol; 2005 Dec; 31(12):1623-9. PubMed ID: 16344125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regional differences in the cyclic variation of myocardial backscatter that parallel regional differences in contractile performance.
    Mottley JG; Glueck RM; Perez JE; Sobel BE; Miller JG
    J Acoust Soc Am; 1984 Dec; 76(6):1617-23. PubMed ID: 6520299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of anisotropic myocardial backscatter using spectral slope, intercept and midband fit parameters.
    Yang M; Krueger TM; Miller JG; Holland MR
    Ultrason Imaging; 2007 Apr; 29(2):122-34. PubMed ID: 17679326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contraction-related variation in frequency dependence of acoustic properties of canine myocardium.
    Wear KA; Milunski MR; Wickline SA; Perez JE; Sobel BE; Miller JG
    J Acoust Soc Am; 1989 Dec; 86(6):2067-72. PubMed ID: 2689494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anisotropy of high-frequency integrated backscatter from aortic valve cusps.
    Khan Z; Boughner DR; Lacefield JC
    Ultrasound Med Biol; 2008 Sep; 34(9):1504-12. PubMed ID: 18407400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional characterization of human ventricular myofiber architecture by ultrasonic backscatter.
    Wickline SA; Verdonk ED; Miller JG
    J Clin Invest; 1991 Aug; 88(2):438-46. PubMed ID: 1864957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myocardial Fiber Mapping of Rat Hearts, Using Apparent Backscatter, with Histologic Validation.
    Milne ML; Schick BM; Alkhazal T; Chung CS
    Ultrasound Med Biol; 2019 Aug; 45(8):2075-2085. PubMed ID: 31155403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in myocardial backscatter throughout the cardiac cycle.
    Madaras EI; Barzilai B; Perez JE; Sobel BE; Miller JG
    Ultrason Imaging; 1983 Jul; 5(3):229-39. PubMed ID: 6685368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of myocardial contraction on ultrasonic backscatter before and after ischemia.
    Barzilai B; Madaras EI; Sobel BE; Miller JG; Pérez JE
    Am J Physiol; 1984 Sep; 247(3 Pt 2):H478-83. PubMed ID: 6476140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A proposed microscopic elastic wave theory for ultrasonic backscatter from myocardial tissue.
    Rose JH; Kaufmann MR; Wickline SA; Hall CS; Miller JG
    J Acoust Soc Am; 1995 Jan; 97(1):656-68. PubMed ID: 7860840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential relationships among myocardial stiffness, the measured level of myocardial backscatter ("image brightness"), and the magnitude of the systematic variation of backscatter (cyclic variation) over the heart cycle.
    Holland MR; Wallace KD; Miller JG
    J Am Soc Echocardiogr; 2004 Nov; 17(11):1131-7. PubMed ID: 15502786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anisotropy of the apparent frequency dependence of backscatter in formalin fixed human myocardium.
    Hall CS; Verdonk ED; Wickline SA; Perez JE; Miller JG
    J Acoust Soc Am; 1997 Jan; 101(1):563-8. PubMed ID: 9000744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relationship between myocardial integrated backscatter, perfusion pressure and wall thickness during isovolumic contraction: an isolated pig heart study.
    Rijsterborgh H; van der Steen AF; Krams R; Mastik F; Lancée CT; Verdouw PD; Roelandt JR; Bom N
    Ultrasound Med Biol; 1996; 22(1):43-52. PubMed ID: 8928316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variation of left ventricular myocardial gray level on two-dimensional echocardiograms as a result of cardiac contraction.
    Olshansky B; Collins SM; Skorton DJ; Prasad NV
    Circulation; 1984 Dec; 70(6):972-7. PubMed ID: 6499154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the anisotropy of apparent integrated ultrasonic backscatter from fixed human tendon and fixed human myocardium.
    Hoffmeister BK; Wong AK; Verdonk ED; Wickline SA; Miller JG
    J Acoust Soc Am; 1995 Feb; 97(2):1307-13. PubMed ID: 7876450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.