BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33511774)

  • 1. Cadmium sulfide nanoparticle biomineralization and biofilm formation mediate cadmium resistance of the deep-sea bacterium Pseudoalteromonas sp. MT33b.
    Ma N; Sun C
    Environ Microbiol Rep; 2021 Jun; 13(3):325-336. PubMed ID: 33511774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of cadmium sulfide nanoparticles mediates cadmium resistance and light utilization of the deep-sea bacterium Idiomarina sp. OT37-5b.
    Ma N; Sha Z; Sun C
    Environ Microbiol; 2021 Feb; 23(2):934-948. PubMed ID: 32815245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Threonine dehydratase enhances bacterial cadmium resistance via driving cysteine desulfuration and biomineralization of cadmium sulfide nanocrystals.
    Ma N; Cai R; Sun C
    J Hazard Mater; 2021 Sep; 417():126102. PubMed ID: 34015711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-removal of cadmium by growing deep-sea bacterium Pseudoalteromonas sp. SCSE709-6.
    Zhou W; Zhang H; Ma Y; Zhou J; Zhang Y
    Extremophiles; 2013 Sep; 17(5):723-31. PubMed ID: 23812889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability and biomineralization of cadmium sulfide nanoparticles biosynthesized by the bacterium Rhodopseudomonas palustris under light.
    Xing SF; Tian HF; Yan Z; Song C; Wang SG
    J Hazard Mater; 2023 Sep; 458():131937. PubMed ID: 37421856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cysteine and thiosulfate promoted cadmium immobilization in strain G303 by the formation of extracellular CdS.
    Zhang S; Song M; Zhang J; Wang H
    Sci Total Environ; 2024 May; 923():171457. PubMed ID: 38442751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a genetic system for the deep-sea psychrophilic bacterium Pseudoalteromonas sp. SM9913.
    Yu ZC; Zhao DL; Ran LY; Mi ZH; Wu ZY; Pang X; Zhang XY; Su HN; Shi M; Song XY; Xie BB; Qin QL; Zhou BC; Chen XL; Zhang YZ
    Microb Cell Fact; 2014 Jan; 13(1):13. PubMed ID: 24450434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic studies highlight outer-membrane proteins related to biofilm development in the marine bacterium Pseudoalteromonas sp. D41.
    Ritter A; Com E; Bazire A; Goncalves Mdos S; Delage L; Le Pennec G; Pineau C; Dreanno C; Compère C; Dufour A
    Proteomics; 2012 Nov; 12(21):3180-92. PubMed ID: 22965736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A newly isolated bacterium Comamonas sp. XL8 alleviates the toxicity of cadmium exposure in rice seedlings by accumulating cadmium.
    Shi Z; Qi X; Zeng XA; Lu Y; Zhou J; Cui K; Zhang L
    J Hazard Mater; 2021 Feb; 403():123824. PubMed ID: 33264916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative genomics reveals a deep-sea sediment-adapted life style of Pseudoalteromonas sp. SM9913.
    Qin QL; Li Y; Zhang YJ; Zhou ZM; Zhang WX; Chen XL; Zhang XY; Zhou BC; Wang L; Zhang YZ
    ISME J; 2011 Feb; 5(2):274-84. PubMed ID: 20703316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional response of Pseudomonas chenduensis strain MBR to cadmium toxicity.
    Li L; Lin Q; Li T; He X; Peng S; Tao Y
    Appl Microbiol Biotechnol; 2020 Nov; 104(22):9749-9757. PubMed ID: 32989515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative transcriptome analysis uncovers roles of hydrogen sulfide for alleviating cadmium toxicity in Tetrahymena thermophila.
    Lv H; Xu J; Bo T; Wang W
    BMC Genomics; 2021 Jan; 22(1):21. PubMed ID: 33407108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioremoval and recovery of Cd(II) by Pseudoalteromonas sp. SCSE709-6: Comparative study on growing and grown cells.
    Zhou W; Liu D; Zhang H; Kong W; Zhang Y
    Bioresour Technol; 2014 Aug; 165():145-51. PubMed ID: 24565875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ability of the marine bacterium Pseudomonas fluorescens BA3SM1 to counteract the toxicity of CdSe nanoparticles.
    Poirier I; Kuhn L; Demortière A; Mirvaux B; Hammann P; Chicher J; Caplat C; Pallud M; Bertrand M
    J Proteomics; 2016 Oct; 148():213-27. PubMed ID: 27523480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial Biofilms for Environmental Bioremediation of Heavy Metals: a Review.
    Syed Z; Sogani M; Rajvanshi J; Sonu K
    Appl Biochem Biotechnol; 2023 Sep; 195(9):5693-5711. PubMed ID: 36576654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic insights into Pseudoalteromonas sp. JSTW coping with petroleum-heavy metals combined pollution.
    Zan S; Lv J; Li Z; Cai Y; Wang Z; Wang J
    J Basic Microbiol; 2021 Oct; 61(10):947-957. PubMed ID: 34387369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aerobic transformation of cadmium through metal sulfide biosynthesis in photosynthetic microorganisms.
    Edwards CD; Beatty JC; Loiselle JB; Vlassov KA; Lefebvre DD
    BMC Microbiol; 2013 Jul; 13():161. PubMed ID: 23855952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomics Insights into
    Gallardo-Benavente C; Campo-Giraldo JL; Castro-Severyn J; Quiroz A; Pérez-Donoso JM
    Genes (Basel); 2021 Jan; 12(2):. PubMed ID: 33514061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SspA positively controls exopolysaccharides production and biofilm formation by up-regulating the algU expression in Pseudoalteromonas sp. R3.
    Yu Z; Zhang J; Ding M; Wu S; Shuangjia Li ; Zhang M; Yin J; Meng Q
    Biochem Biophys Res Commun; 2020 Dec; 533(4):988-994. PubMed ID: 33010891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The regulatory mechanism of Chryseobacterium sp. resistance mediated by montmorillonite upon cadmium stress.
    Wang H; Wu P; Liu J; Yang S; Ruan B; Rehman S; Liu L; Zhu N
    Chemosphere; 2020 Feb; 240():124851. PubMed ID: 31546187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.