BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

4740 related articles for article (PubMed ID: 33511841)

  • 1. Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp
    Kariofillis SK; Doyle AG
    Acc Chem Res; 2021 Feb; 54(4):988-1000. PubMed ID: 33511841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct C(sp
    Shields BJ; Doyle AG
    J Am Chem Soc; 2016 Oct; 138(39):12719-12722. PubMed ID: 27653738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Electron Transmetalation via Photoredox/Nickel Dual Catalysis: Unlocking a New Paradigm for sp(3)-sp(2) Cross-Coupling.
    Tellis JC; Kelly CB; Primer DN; Jouffroy M; Patel NR; Molander GA
    Acc Chem Res; 2016 Jul; 49(7):1429-39. PubMed ID: 27379472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modular Access to Chiral α-(Hetero)aryl Amines via Ni/Photoredox-Catalyzed Enantioselective Cross-Coupling.
    Shu X; Zhong D; Lin Y; Qin X; Huo H
    J Am Chem Soc; 2022 May; 144(19):8797-8806. PubMed ID: 35503417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nickel/Photoredox-Catalyzed Methylation of (Hetero)aryl Chlorides Using Trimethyl Orthoformate as a Methyl Radical Source.
    Kariofillis SK; Shields BJ; Tekle-Smith MA; Zacuto MJ; Doyle AG
    J Am Chem Soc; 2020 Apr; 142(16):7683-7689. PubMed ID: 32275411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct C-C Bond Formation from Alkanes Using Ni-Photoredox Catalysis.
    Ackerman LKG; Martinez Alvarado JI; Doyle AG
    J Am Chem Soc; 2018 Oct; 140(43):14059-14063. PubMed ID: 30351143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nickel-Catalyzed Radical Mechanisms: Informing Cross-Coupling for Synthesizing Non-Canonical Biomolecules.
    Dawson GA; Spielvogel EH; Diao T
    Acc Chem Res; 2023 Dec; 56(24):3640-3653. PubMed ID: 38033206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mild, Redox-Neutral Formylation of Aryl Chlorides through the Photocatalytic Generation of Chlorine Radicals.
    Nielsen MK; Shields BJ; Liu J; Williams MJ; Zacuto MJ; Doyle AG
    Angew Chem Int Ed Engl; 2017 Jun; 56(25):7191-7194. PubMed ID: 28471521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Merging Visible Light Photoredox and Gold Catalysis.
    Hopkinson MN; Tlahuext-Aca A; Glorius F
    Acc Chem Res; 2016 Oct; 49(10):2261-2272. PubMed ID: 27610939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photocatalytic Activation of Less Reactive Bonds and Their Functionalization via Hydrogen-Evolution Cross-Couplings.
    Chen B; Wu LZ; Tung CH
    Acc Chem Res; 2018 Oct; 51(10):2512-2523. PubMed ID: 30280898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-Lived Charge-Transfer States of Nickel(II) Aryl Halide Complexes Facilitate Bimolecular Photoinduced Electron Transfer.
    Shields BJ; Kudisch B; Scholes GD; Doyle AG
    J Am Chem Soc; 2018 Feb; 140(8):3035-3039. PubMed ID: 29400956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. When Light Meets Nitrogen-Centered Radicals: From Reagents to Catalysts.
    Yu XY; Zhao QQ; Chen J; Xiao WJ; Chen JR
    Acc Chem Res; 2020 May; 53(5):1066-1083. PubMed ID: 32286794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visible Light Mediated Photoredox Catalytic Arylation Reactions.
    Ghosh I; Marzo L; Das A; Shaikh R; König B
    Acc Chem Res; 2016 Aug; 49(8):1566-77. PubMed ID: 27482835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nickel-Catalyzed Migratory Cross-Coupling Reactions: New Opportunities for Selective C-H Functionalization.
    Wang Y; He Y; Zhu S
    Acc Chem Res; 2023 Dec; 56(23):3475-3491. PubMed ID: 37971926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nickel-Catalyzed Thermal Redox Functionalization of C(sp
    Gong Y; Su L; Zhu Z; Ye Y; Gong H
    Angew Chem Int Ed Engl; 2022 May; 61(22):e202201662. PubMed ID: 35293093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site- and enantioselective cross-coupling of saturated N-heterocycles with carboxylic acids by cooperative Ni/photoredox catalysis.
    Shu X; Zhong D; Huang Q; Huan L; Huo H
    Nat Commun; 2023 Jan; 14(1):125. PubMed ID: 36624097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical Mechanistic Study of C(sp
    Wang S; Li R; Su Z; Zhu B; Guan W
    Chem Asian J; 2023 Jun; 18(11):e202300283. PubMed ID: 37060254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Advances in First-Row Transition Metal-Catalyzed Reductive Coupling Reactions for π-Bond Functionalization and C-Glycosylation.
    Wei Y; Lin LQH; Lee BC; Koh MJ
    Acc Chem Res; 2023 Nov; 56(22):3292-3312. PubMed ID: 37917928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct arylation of strong aliphatic C-H bonds.
    Perry IB; Brewer TF; Sarver PJ; Schultz DM; DiRocco DA; MacMillan DWC
    Nature; 2018 Aug; 560(7716):70-75. PubMed ID: 30068953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism-Driven Development of Group 10 Metal-Catalyzed Decarbonylative Coupling Reactions.
    Lalloo N; Brigham CE; Sanford MS
    Acc Chem Res; 2022 Dec; 55(23):3430-3444. PubMed ID: 36382937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 237.