These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 33511845)
1. FMODB: The World's First Database of Quantum Mechanical Calculations for Biomacromolecules Based on the Fragment Molecular Orbital Method. Takaya D; Watanabe C; Nagase S; Kamisaka K; Okiyama Y; Moriwaki H; Yuki H; Sato T; Kurita N; Yagi Y; Takagi T; Kawashita N; Takaba K; Ozawa T; Takimoto-Kamimura M; Tanaka S; Fukuzawa K; Honma T J Chem Inf Model; 2021 Feb; 61(2):777-794. PubMed ID: 33511845 [TBL] [Abstract][Full Text] [Related]
2. Special Features of COVID-19 in the FMODB: Fragment Molecular Orbital Calculations and Interaction Energy Analysis of SARS-CoV-2-Related Proteins. Fukuzawa K; Kato K; Watanabe C; Kawashima Y; Handa Y; Yamamoto A; Watanabe K; Ohyama T; Kamisaka K; Takaya D; Honma T J Chem Inf Model; 2021 Sep; 61(9):4594-4612. PubMed ID: 34506132 [TBL] [Abstract][Full Text] [Related]
3. Exploring GPCR-Ligand Interactions with the Fragment Molecular Orbital (FMO) Method. Chudyk EI; Sarrat L; Aldeghi M; Fedorov DG; Bodkin MJ; James T; Southey M; Robinson R; Morao I; Heifetz A Methods Mol Biol; 2018; 1705():179-195. PubMed ID: 29188563 [TBL] [Abstract][Full Text] [Related]
4. [Applications of the Fragment Molecular Orbital Method in Drug Discovery]. Ishikawa T Yakugaku Zasshi; 2016; 136(1):121-30. PubMed ID: 26725679 [TBL] [Abstract][Full Text] [Related]
5. Theoretical Analysis of Activity Cliffs among Benzofuranone-Class Pim1 Inhibitors Using the Fragment Molecular Orbital Method with Molecular Mechanics Poisson-Boltzmann Surface Area (FMO+MM-PBSA) Approach. Watanabe C; Watanabe H; Fukuzawa K; Parker LJ; Okiyama Y; Yuki H; Yokoyama S; Nakano H; Tanaka S; Honma T J Chem Inf Model; 2017 Dec; 57(12):2996-3010. PubMed ID: 29111719 [TBL] [Abstract][Full Text] [Related]
6. Analyzing GPCR-Ligand Interactions with the Fragment Molecular Orbital (FMO) Method. Heifetz A; James T; Southey M; Morao I; Fedorov DG; Bodkin MJ; Townsend-Nicholson A Methods Mol Biol; 2020; 2114():163-175. PubMed ID: 32016893 [TBL] [Abstract][Full Text] [Related]
7. Protein ligand interaction analysis against new CaMKK2 inhibitors by use of X-ray crystallography and the fragment molecular orbital (FMO) method. Takaya D; Niwa H; Mikuni J; Nakamura K; Handa N; Tanaka A; Yokoyama S; Honma T J Mol Graph Model; 2020 Sep; 99():107599. PubMed ID: 32348940 [TBL] [Abstract][Full Text] [Related]
8. Prediction of cyclin-dependent kinase 2 inhibitor potency using the fragment molecular orbital method. Mazanetz MP; Ichihara O; Law RJ; Whittaker M J Cheminform; 2011 Jan; 3(1):2. PubMed ID: 21219630 [TBL] [Abstract][Full Text] [Related]
9. Assessment and acceleration of binding energy calculations for protein-ligand complexes by the fragment molecular orbital method. Otsuka T; Okimoto N; Taiji M J Comput Chem; 2015 Nov; 36(30):2209-18. PubMed ID: 26400829 [TBL] [Abstract][Full Text] [Related]
10. Guiding Medicinal Chemistry with Fragment Molecular Orbital (FMO) Method. Heifetz A; James T; Southey M; Bodkin MJ; Bromidge S Methods Mol Biol; 2020; 2114():37-48. PubMed ID: 32016885 [TBL] [Abstract][Full Text] [Related]
11. Protein-ligand binding affinity prediction of cyclin-dependent kinase-2 inhibitors by dynamically averaged fragment molecular orbital-based interaction energy. Takaba K; Watanabe C; Tokuhisa A; Akinaga Y; Ma B; Kanada R; Araki M; Okuno Y; Kawashima Y; Moriwaki H; Kawashita N; Honma T; Fukuzawa K; Tanaka S J Comput Chem; 2022 Jul; 43(20):1362-1371. PubMed ID: 35678372 [TBL] [Abstract][Full Text] [Related]
12. Computer-Aided Drug Design Using the Fragment Molecular Orbital Method: Current Status and Future Applications for SBDD. Takaya D Chem Pharm Bull (Tokyo); 2024; 72(9):781-786. PubMed ID: 39218702 [TBL] [Abstract][Full Text] [Related]
13. Characterizing Protein-Protein Interactions with the Fragment Molecular Orbital Method. Heifetz A; Sladek V; Townsend-Nicholson A; Fedorov DG Methods Mol Biol; 2020; 2114():187-205. PubMed ID: 32016895 [TBL] [Abstract][Full Text] [Related]
14. Fragment quantum mechanical calculation of proteins and its applications. He X; Zhu T; Wang X; Liu J; Zhang JZ Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673 [TBL] [Abstract][Full Text] [Related]
15. Analyzing Interactions with the Fragment Molecular Orbital Method. Fedorov DG Methods Mol Biol; 2020; 2114():49-73. PubMed ID: 32016886 [TBL] [Abstract][Full Text] [Related]
16. FMOe: Preprocessing and Visualizing Package of the Fragment Molecular Orbital Method for Molecular Operating Environment and Its Applications in Covalent Ligand and Metalloprotein Analyses. Moriwaki H; Kawashima Y; Watanabe C; Kamisaka K; Okiyama Y; Fukuzawa K; Honma T J Chem Inf Model; 2024 Sep; 64(18):6927-6937. PubMed ID: 39235048 [TBL] [Abstract][Full Text] [Related]
17. Energy decomposition analysis in solution based on the fragment molecular orbital method. Fedorov DG; Kitaura K J Phys Chem A; 2012 Jan; 116(1):704-19. PubMed ID: 22098297 [TBL] [Abstract][Full Text] [Related]
18. Fragment molecular orbital calculations for biomolecules. Fukuzawa K; Tanaka S Curr Opin Struct Biol; 2022 Feb; 72():127-134. PubMed ID: 34656048 [TBL] [Abstract][Full Text] [Related]
19. Extending the power of quantum chemistry to large systems with the fragment molecular orbital method. Fedorov DG; Kitaura K J Phys Chem A; 2007 Aug; 111(30):6904-14. PubMed ID: 17511437 [TBL] [Abstract][Full Text] [Related]
20. Accurate Scoring in Seconds with the Fragment Molecular Orbital and Density-Functional Tight-Binding Methods. Morao I; Heifetz A; Fedorov DG Methods Mol Biol; 2020; 2114():143-148. PubMed ID: 32016891 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]