These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 33511938)

  • 1. Site-Selective, Chemical Modification of Protein at Aromatic Side Chain and Their Emergent Applications.
    Chowdhury A; Chatterjee S; Pongen A; Sarania D; Tripathi NM; Bandyopadhyay A
    Protein Pept Lett; 2021; 28(7):788-808. PubMed ID: 33511938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intramolecular quenching of tryptophan phosphorescence in short peptides and proteins.
    Gonnelli M; Strambini GB
    Photochem Photobiol; 2005; 81(3):614-22. PubMed ID: 15689181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorescence lifetime of tryptophan in proteins.
    Gonnelli M; Strambini GB
    Biochemistry; 1995 Oct; 34(42):13847-57. PubMed ID: 7577979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-selective lysine conjugation methods and applications towards antibody-drug conjugates.
    Haque M; Forte N; Baker JR
    Chem Commun (Camb); 2021 Oct; 57(82):10689-10702. PubMed ID: 34570125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transition metal catalyzed methods for site-selective protein modification.
    Antos JM; Francis MB
    Curr Opin Chem Biol; 2006 Jun; 10(3):253-62. PubMed ID: 16698310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Packing of aromatic rings against tryptophan residues in proteins.
    Samanta U; Pal D; Chakrabarti P
    Acta Crystallogr D Biol Crystallogr; 1999 Aug; 55(Pt 8):1421-7. PubMed ID: 10417410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into intramolecular Trp and His side-chain orientation and stereospecific π interactions surrounding metal centers: an investigation using protein metal-site mimicry in solution.
    Yang CM; Zhang J
    Chemistry; 2010 Sep; 16(35):10854-65. PubMed ID: 20669189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemoselective Peptide Modification via Photocatalytic Tryptophan β-Position Conjugation.
    Yu Y; Zhang LK; Buevich AV; Li G; Tang H; Vachal P; Colletti SL; Shi ZC
    J Am Chem Soc; 2018 Jun; 140(22):6797-6800. PubMed ID: 29762027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tyrosine Conjugation Methods for Protein Labelling.
    Alvarez Dorta D; Deniaud D; Mével M; Gouin SG
    Chemistry; 2020 Nov; 26(63):14257-14269. PubMed ID: 32538529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-Specifically Labeled Immunoconjugates for Molecular Imaging--Part 2: Peptide Tags and Unnatural Amino Acids.
    Adumeau P; Sharma SK; Brent C; Zeglis BM
    Mol Imaging Biol; 2016 Apr; 18(2):153-65. PubMed ID: 26754791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous ultraviolet B-induced photo-oxidation of tryptophan/tyrosine and racemization of neighboring aspartyl residues in peptides.
    Cai S; Fujii N; Saito T; Fujii N
    Free Radic Biol Med; 2013 Dec; 65():1037-1046. PubMed ID: 23999504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactivity and Selectivity Principles in Native Protein Bioconjugation.
    Adakkattil R; Thakur K; Rai V
    Chem Rec; 2021 Aug; 21(8):1941-1956. PubMed ID: 34184826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-Selective Protein Conjugation by a Multicomponent Ugi Reaction.
    Koutsopetras I; Vaur V; Benazza R; Diemer H; Sornay C; Ersoy Y; Rochet L; Longo C; Hernandez-Alba O; Erb S; Detappe A; Skerra A; Wagner A; Cianferani S; Chaubet G
    Chemistry; 2024 Mar; 30(14):e202303242. PubMed ID: 38050774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circular dichroism studies of barnase and its mutants: characterization of the contribution of aromatic side chains.
    Vuilleumier S; Sancho J; Loewenthal R; Fersht AR
    Biochemistry; 1993 Oct; 32(39):10303-13. PubMed ID: 8399173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inducible, Selective Labeling of Proteins via Enzymatic Oxidation of Tyrosine.
    Bruins JJ; van de Wouw C; Keijzer JF; Albada B; van Delft FL
    Methods Mol Biol; 2019; 2012():357-368. PubMed ID: 31161517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. His-Cys and Trp-Cys cross-links generated by post-translational chemical modification.
    Fujieda N
    Biosci Biotechnol Biochem; 2020 Mar; 84(3):445-454. PubMed ID: 31771431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioconjugation through Mesitylene Thiol Alkylation.
    Ramos-Tomillero I; Perez-Chacon G; Somovilla-Crespo B; Sanchez-Madrid F; Domínguez JM; Cuevas C; Zapata JM; Rodríguez H; Albericio F
    Bioconjug Chem; 2018 Apr; 29(4):1199-1208. PubMed ID: 29433317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cation-pi Interactions and oxidative effects on Cu+ and Cu2+ binding to Phe, Tyr, Trp, and His amino acids in the gas phase. Insights from first-principles calculations.
    Rimola A; Rodríguez-Santiago L; Sodupe M
    J Phys Chem B; 2006 Nov; 110(47):24189-99. PubMed ID: 17125391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering Antibodies with C-Terminal Sortase-Mediated Modification for Targeted Nanomedicine.
    Hashad RA; Lange JL; Tan NCW; Alt K; Hagemeyer CE
    Methods Mol Biol; 2019; 2033():67-80. PubMed ID: 31332748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-specific antibody-drug conjugates: the nexus of bioorthogonal chemistry, protein engineering, and drug development.
    Agarwal P; Bertozzi CR
    Bioconjug Chem; 2015 Feb; 26(2):176-92. PubMed ID: 25494884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.