These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33511938)

  • 41. Investigating Ugi/Passerini Multicomponent Reactions for the Site-Selective Conjugation of Native Trastuzumab*.
    Sornay C; Hessmann S; Erb S; Dovgan I; Ehkirch A; Botzanowski T; Cianférani S; Wagner A; Chaubet G
    Chemistry; 2020 Nov; 26(61):13797-13805. PubMed ID: 32588934
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development of oxidative coupling strategies for site-selective protein modification.
    ElSohly AM; Francis MB
    Acc Chem Res; 2015 Jul; 48(7):1971-8. PubMed ID: 26057118
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Selective Derivatization of Hexahistidine-Tagged Recombinant Proteins.
    Kadambar VK; Melman A
    Adv Exp Med Biol; 2019; 1140():237-250. PubMed ID: 31347051
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Aromatic side-chain interactions in proteins. II. Near- and far-sequence Phe-X pairs.
    Thomas A; Meurisse R; Brasseur R
    Proteins; 2002 Sep; 48(4):635-44. PubMed ID: 12211031
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Kinetic analysis of the role of histidine chloramines in hypochlorous acid mediated protein oxidation.
    Pattison DI; Davies MJ
    Biochemistry; 2005 May; 44(19):7378-87. PubMed ID: 15882077
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Site-selective tyrosine bioconjugation via photoredox catalysis for native-to-bioorthogonal protein transformation.
    Li BX; Kim DK; Bloom S; Huang RY; Qiao JX; Ewing WR; Oblinsky DG; Scholes GD; MacMillan DWC
    Nat Chem; 2021 Sep; 13(9):902-908. PubMed ID: 34183819
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Aromatic side-chain interactions in proteins. I. Main structural features.
    Thomas A; Meurisse R; Charloteaux B; Brasseur R
    Proteins; 2002 Sep; 48(4):628-34. PubMed ID: 12211030
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Triple-resonance methods for complete resonance assignment of aromatic protons and directly bound heteronuclei in histidine and tryptophan residues.
    Löhr F; Rogov VV; Shi M; Bernhard F; Dötsch V
    J Biomol NMR; 2005 Aug; 32(4):309-28. PubMed ID: 16211484
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Roles of active site aromatic residues in catalysis by ketosteroid isomerase from Pseudomonas putida biotype B.
    Kim DH; Nam GH; Jang DS; Choi G; Joo S; Kim JS; Oh BH; Choi KY
    Biochemistry; 1999 Oct; 38(42):13810-9. PubMed ID: 10529226
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Degradation of Amino Acids and Structure in Model Proteins and Bacteriophage MS2 by Chlorine, Bromine, and Ozone.
    Choe JK; Richards DH; Wilson CJ; Mitch WA
    Environ Sci Technol; 2015 Nov; 49(22):13331-9. PubMed ID: 26488608
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Antibody conjugates with unnatural amino acids.
    Hallam TJ; Wold E; Wahl A; Smider VV
    Mol Pharm; 2015 Jun; 12(6):1848-62. PubMed ID: 25898256
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Replacement surgery with unnatural amino acids in the lock-and-key joint of glutathione transferase subunits.
    Hegazy UM; Hellman U; Mannervik B
    Chem Biol; 2006 Sep; 13(9):929-36. PubMed ID: 16984882
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A novel method for the biosynthesis of deuterated proteins with selective protonation at the aromatic rings of Phe, Tyr and Trp.
    Rajesh S; Nietlispach D; Nakayama H; Takio K; Laue ED; Shibata T; Ito Y
    J Biomol NMR; 2003 Sep; 27(1):81-6. PubMed ID: 12878843
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Development, Optimization, and Structural Characterization of an Efficient Peptide-Based Photoaffinity Cross-Linking Reaction for Generation of Homogeneous Conjugates from Wild-Type Antibodies.
    Vance N; Zacharias N; Ultsch M; Li G; Fourie A; Liu P; LaFrance-Vanasse J; Ernst JA; Sandoval W; Kozak KR; Phillips G; Wang W; Sadowsky J
    Bioconjug Chem; 2019 Jan; 30(1):148-160. PubMed ID: 30566343
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Complexation of Al(III) by aromatic amino acids in the gas phase.
    Rezabal E; Marino T; Mercero JM; Russo N; Ugalde JM
    Inorg Chem; 2007 Aug; 46(16):6413-9. PubMed ID: 17608416
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Photocatalytic Modification of Amino Acids, Peptides, and Proteins.
    Bottecchia C; Noël T
    Chemistry; 2019 Jan; 25(1):26-42. PubMed ID: 30063101
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Contribution to activity of histidine-aromatic, amide-aromatic, and aromatic-aromatic interactions in the extended catalytic site of cysteine proteinases.
    Brömme D; Bonneau PR; Purisima E; Lachance P; Hajnik S; Thomas DY; Storer AC
    Biochemistry; 1996 Apr; 35(13):3970-9. PubMed ID: 8672429
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Roles of aromatic residues in high interfacial activity of Naja naja atra phospholipase A2.
    Sumandea M; Das S; Sumandea C; Cho W
    Biochemistry; 1999 Dec; 38(49):16290-7. PubMed ID: 10587453
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Distribution of solvent and ligand molecules around aromatic side chains in proteins and its implication on carbonic anhydrase catalytic mechanism.
    Håkansson K
    Int J Biol Macromol; 1996 Apr; 18(3):189-94. PubMed ID: 8729030
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The interaction between methionine and two aromatic amino acids is an abundant and multifunctional motif in proteins.
    Weber DS; Warren JJ
    Arch Biochem Biophys; 2019 Sep; 672():108053. PubMed ID: 31351863
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.