These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 33512236)

  • 1. Efficient Qubit Measurement with a Nonreciprocal Microwave Amplifier.
    Lecocq F; Ranzani L; Peterson GA; Cicak K; Jin XY; Simmonds RW; Teufel JD; Aumentado J
    Phys Rev Lett; 2021 Jan; 126(2):020502. PubMed ID: 33512236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient and Low-Backaction Quantum Measurement Using a Chip-Scale Detector.
    Rosenthal EI; Schneider CMF; Malnou M; Zhao Z; Leditzky F; Chapman BJ; Wustmann W; Ma X; Palken DA; Zanner MF; Vale LR; Hilton GC; Gao J; Smith G; Kirchmair G; Lehnert KW
    Phys Rev Lett; 2021 Mar; 126(9):090503. PubMed ID: 33750151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilizing Rabi oscillations in a superconducting qubit using quantum feedback.
    Vijay R; Macklin C; Slichter DH; Weber SJ; Murch KW; Naik R; Korotkov AN; Siddiqi I
    Nature; 2012 Oct; 490(7418):77-80. PubMed ID: 23038468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum Rifling: Protecting a Qubit from Measurement Back Action.
    Szombati D; Gomez Frieiro A; Müller C; Jones T; Jerger M; Fedorov A
    Phys Rev Lett; 2020 Feb; 124(7):070401. PubMed ID: 32142306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partial-measurement backaction and nonclassical weak values in a superconducting circuit.
    Groen JP; Ristè D; Tornberg L; Cramer J; de Groot PC; Picot T; Johansson G; DiCarlo L
    Phys Rev Lett; 2013 Aug; 111(9):090506. PubMed ID: 24033014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active protection of a superconducting qubit with an interferometric Josephson isolator.
    Abdo B; Bronn NT; Jinka O; Olivadese S; Córcoles AD; Adiga VP; Brink M; Lake RE; Wu X; Pappas DP; Chow JM
    Nat Commun; 2019 Jul; 10(1):3154. PubMed ID: 31316071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superconducting-qubit readout via low-backaction electro-optic transduction.
    Delaney RD; Urmey MD; Mittal S; Brubaker BM; Kindem JM; Burns PS; Regal CA; Lehnert KW
    Nature; 2022 Jun; 606(7914):489-493. PubMed ID: 35705821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum nondemolition measurement of a superconducting qubit in the weakly projective regime.
    Picot T; Schouten R; Harmans CJ; Mooij JE
    Phys Rev Lett; 2010 Jul; 105(4):040506. PubMed ID: 20867830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observing single quantum trajectories of a superconducting quantum bit.
    Murch KW; Weber SJ; Macklin C; Siddiqi I
    Nature; 2013 Oct; 502(7470):211-4. PubMed ID: 24108052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Weak qubit measurement with a nonlinear cavity: beyond perturbation theory.
    Laflamme C; Clerk AA
    Phys Rev Lett; 2012 Sep; 109(12):123602. PubMed ID: 23005947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of quantum jumps in a superconducting artificial atom.
    Vijay R; Slichter DH; Siddiqi I
    Phys Rev Lett; 2011 Mar; 106(11):110502. PubMed ID: 21469850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energetics of a Single Qubit Gate.
    Stevens J; Szombati D; Maffei M; Elouard C; Assouly R; Cottet N; Dassonneville R; Ficheux Q; Zeppetzauer S; Bienfait A; Jordan AN; Auffèves A; Huard B
    Phys Rev Lett; 2022 Sep; 129(11):110601. PubMed ID: 36154409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field.
    Schuster DI; Wallraff A; Blais A; Frunzio L; Huang RS; Majer J; Girvin SM; Schoelkopf RJ
    Phys Rev Lett; 2005 Apr; 94(12):123602. PubMed ID: 15903919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feedback control of a solid-state qubit using high-fidelity projective measurement.
    Ristè D; Bultink CC; Lehnert KW; DiCarlo L
    Phys Rev Lett; 2012 Dec; 109(24):240502. PubMed ID: 23368293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incoherent Qubit Control Using the Quantum Zeno Effect.
    Hacohen-Gourgy S; García-Pintos LP; Martin LS; Dressel J; Siddiqi I
    Phys Rev Lett; 2018 Jan; 120(2):020505. PubMed ID: 29376684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum non-demolition measurement of an electron spin qubit.
    Nakajima T; Noiri A; Yoneda J; Delbecq MR; Stano P; Otsuka T; Takeda K; Amaha S; Allison G; Kawasaki K; Ludwig A; Wieck AD; Loss D; Tarucha S
    Nat Nanotechnol; 2019 Jun; 14(6):555-560. PubMed ID: 30988474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum time evolution in a qubit readout process with a Josephson bifurcation amplifier.
    Nakano H; Saito S; Semba K; Takayanagi H
    Phys Rev Lett; 2009 Jun; 102(25):257003. PubMed ID: 19659113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Josephson directional amplifier for quantum measurement of superconducting circuits.
    Abdo B; Sliwa K; Shankar S; Hatridge M; Frunzio L; Schoelkopf R; Devoret M
    Phys Rev Lett; 2014 Apr; 112(16):167701. PubMed ID: 24815669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-Loop Realization of Arbitrary Nonadiabatic Holonomic Single-Qubit Quantum Gates in a Superconducting Circuit.
    Xu Y; Cai W; Ma Y; Mu X; Hu L; Chen T; Wang H; Song YP; Xue ZY; Yin ZQ; Sun L
    Phys Rev Lett; 2018 Sep; 121(11):110501. PubMed ID: 30265093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sideband cooling beyond the quantum backaction limit with squeezed light.
    Clark JB; Lecocq F; Simmonds RW; Aumentado J; Teufel JD
    Nature; 2017 Jan; 541(7636):191-195. PubMed ID: 28079081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.