BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 33512458)

  • 1. Modeling and targeting of erythroleukemia by hematopoietic genome editing.
    Iacobucci I; Qu C; Varotto E; Janke LJ; Yang X; Seth A; Shelat A; Friske JD; Fukano R; Yu J; Freeman BB; Kennedy JA; Sperling AS; Zheng R; Wang Y; Jogiraju H; Dickerson KM; Payne-Turner D; Morris SM; Hollis ES; Ghosn N; Haggard GE; Lindsley RC; Ebert BL; Mullighan CG
    Blood; 2021 Mar; 137(12):1628-1640. PubMed ID: 33512458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human erythroleukemia genetics and transcriptomes identify master transcription factors as functional disease drivers.
    Fagnan A; Bagger FO; Piqué-Borràs MR; Ignacimouttou C; Caulier A; Lopez CK; Robert E; Uzan B; Gelsi-Boyer V; Aid Z; Thirant C; Moll U; Tauchmann S; Kurtovic-Kozaric A; Maciejewski J; Dierks C; Spinelli O; Salmoiraghi S; Pabst T; Shimoda K; Deleuze V; Lapillonne H; Sweeney C; De Mas V; Leite B; Kadri Z; Malinge S; de Botton S; Micol JB; Kile B; Carmichael CL; Iacobucci I; Mullighan CG; Carroll M; Valent P; Bernard OA; Delabesse E; Vyas P; Birnbaum D; Anguita E; Garçon L; Soler E; Schwaller J; Mercher T
    Blood; 2020 Aug; 136(6):698-714. PubMed ID: 32350520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bcor deficiency perturbs erythro-megakaryopoiesis and cooperates with Dnmt3a loss in acute erythroid leukemia onset in mice.
    Sportoletti P; Sorcini D; Guzman AG; Reyes JM; Stella A; Marra A; Sartori S; Brunetti L; Rossi R; Papa BD; Adamo FM; Pianigiani G; Betti C; Scialdone A; Guarente V; Spinozzi G; Tini V; Martelli MP; Goodell MA; Falini B
    Leukemia; 2021 Jul; 35(7):1949-1963. PubMed ID: 33159179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. To bi or not to bi: Acute erythroid leukemias and hematopoietic lineage choice.
    Di Genua C; Nerlov C
    Exp Hematol; 2021 May; 97():6-13. PubMed ID: 33600869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Molecular pathogenesis and therapeutic targets in acute erythroid leukemia].
    Takeda J
    Rinsho Ketsueki; 2022; 63(2):121-133. PubMed ID: 35264503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ParaHox gene Cdx4 induces acute erythroid leukemia in mice.
    Thoene S; Mandal T; Vegi NM; Quintanilla-Martinez L; Rösler R; Wiese S; Metzeler KH; Herold T; Haferlach T; Döhner K; Döhner H; Schwarzmüller L; Klingmüller U; Buske C; Rawat VPS; Feuring-Buske M
    Blood Adv; 2019 Nov; 3(22):3729-3739. PubMed ID: 31770439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic subtyping and therapeutic targeting of acute erythroleukemia.
    Iacobucci I; Wen J; Meggendorfer M; Choi JK; Shi L; Pounds SB; Carmichael CL; Masih KE; Morris SM; Lindsley RC; Janke LJ; Alexander TB; Song G; Qu C; Li Y; Payne-Turner D; Tomizawa D; Kiyokawa N; Valentine M; Valentine V; Basso G; Locatelli F; Enemark EJ; Kham SKY; Yeoh AEJ; Ma X; Zhou X; Sioson E; Rusch M; Ries RE; Stieglitz E; Hunger SP; Wei AH; To LB; Lewis ID; D'Andrea RJ; Kile BT; Brown AL; Scott HS; Hahn CN; Marlton P; Pei D; Cheng C; Loh ML; Ebert BL; Meshinchi S; Haferlach T; Mullighan CG
    Nat Genet; 2019 Apr; 51(4):694-704. PubMed ID: 30926971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. C/EBPα and GATA-2 Mutations Induce Bilineage Acute Erythroid Leukemia through Transformation of a Neomorphic Neutrophil-Erythroid Progenitor.
    Di Genua C; Valletta S; Buono M; Stoilova B; Sweeney C; Rodriguez-Meira A; Grover A; Drissen R; Meng Y; Beveridge R; Aboukhalil Z; Karamitros D; Belderbos ME; Bystrykh L; Thongjuea S; Vyas P; Nerlov C
    Cancer Cell; 2020 May; 37(5):690-704.e8. PubMed ID: 32330454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amplified EPOR/JAK2 Genes Define a Unique Subtype of Acute Erythroid Leukemia.
    Takeda J; Yoshida K; Nakagawa MM; Nannya Y; Yoda A; Saiki R; Ochi Y; Zhao L; Okuda R; Qi X; Mori T; Kon A; Chiba K; Tanaka H; Shiraishi Y; Kuo MC; Kerr CM; Nagata Y; Morishita D; Hiramoto N; Hangaishi A; Nakazawa H; Ishiyama K; Miyano S; Chiba S; Miyazaki Y; Kitano T; Usuki K; Sezaki N; Tsurumi H; Miyawaki S; Maciejewski JP; Ishikawa T; Ohyashiki K; Ganser A; Heuser M; Thol F; Shih LY; Takaori-Kondo A; Makishima H; Ogawa S
    Blood Cancer Discov; 2022 Sep; 3(5):410-427. PubMed ID: 35839275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplex CRISPR/Cas9-Based Genome Editing in Human Hematopoietic Stem Cells Models Clonal Hematopoiesis and Myeloid Neoplasia.
    Tothova Z; Krill-Burger JM; Popova KD; Landers CC; Sievers QL; Yudovich D; Belizaire R; Aster JC; Morgan EA; Tsherniak A; Ebert BL
    Cell Stem Cell; 2017 Oct; 21(4):547-555.e8. PubMed ID: 28985529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-Mediated Gene Editing to Assess the Roles of Tet2 and Dnmt3a in Clonal Hematopoiesis and Cardiovascular Disease.
    Sano S; Oshima K; Wang Y; Katanasaka Y; Sano M; Walsh K
    Circ Res; 2018 Jul; 123(3):335-341. PubMed ID: 29728415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute erythroid leukemia.
    Zuo Z; Polski JM; Kasyan A; Medeiros LJ
    Arch Pathol Lab Med; 2010 Sep; 134(9):1261-70. PubMed ID: 20807044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Erythroleukemia: an Update.
    Weinberg OK; Arber DA
    Curr Oncol Rep; 2021 Apr; 23(6):69. PubMed ID: 33876292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. microRNA-23a, -27a and -24 synergistically regulate JAK1/Stat3 cascade and serve as novel therapeutic targets in human acute erythroid leukemia.
    Su R; Dong L; Zou D; Zhao H; Ren Y; Li F; Yi P; Li L; Zhu Y; Ma Y; Wang J; Wang F; Yu J
    Oncogene; 2016 Nov; 35(46):6001-6014. PubMed ID: 27086927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute erythroid leukemia is enriched in NUP98 fusions: a report from the Children's Oncology Group.
    Chisholm KM; Heerema-McKenney AE; Choi JK; Smith J; Ries RE; Hirsch BA; Raimondi SC; Alonzo TA; Wang YC; Aplenc R; Sung L; Gamis AS; Meshinchi S; Kahwash SB
    Blood Adv; 2020 Dec; 4(23):6000-6008. PubMed ID: 33284945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunophenotypical profiling of myeloid neoplasms with erythroid predominance using mass cytometry (CyTOF).
    Maag AH; Swanton H; Kull M; Vegi NM; Feuring M
    Cytometry A; 2023 Jul; 103(7):551-562. PubMed ID: 36647792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic and epigenetic factors interacting with clonal hematopoiesis resulting in chronic myelomonocytic leukemia.
    Carr RM; Patnaik MM
    Curr Opin Hematol; 2020 Jan; 27(1):2-10. PubMed ID: 31688455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LSD1 defines erythroleukemia metabolism by controlling the lineage-specific transcription factors GATA1 and C/EBPα.
    Kohrogi K; Hino S; Sakamoto A; Anan K; Takase R; Araki H; Hino Y; Araki K; Sato T; Nakamura K; Nakao M
    Blood Adv; 2021 May; 5(9):2305-2318. PubMed ID: 33929501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemotherapeutics for Acute Erythroid Leukemia: Research, Present and Future.
    Liao Z; Li J; Wu J; Liu J; Sun S
    Curr Mol Med; 2021; 21(10):819-831. PubMed ID: 33475071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exome sequencing identifies highly recurrent somatic GATA2 and CEBPA mutations in acute erythroid leukemia.
    Ping N; Sun A; Song Y; Wang Q; Yin J; Cheng W; Xu Y; Wen L; Yao H; Ma L; Qiu H; Ruan C; Wu D; Chen S
    Leukemia; 2017 Jan; 31(1):195-202. PubMed ID: 27389056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.