These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 33512518)

  • 1. Development of Electronic Health Record-Based Prediction Models for 30-Day Readmission Risk Among Patients Hospitalized for Acute Myocardial Infarction.
    Matheny ME; Ricket I; Goodrich CA; Shah RU; Stabler ME; Perkins AM; Dorn C; Denton J; Bray BE; Gouripeddi R; Higgins J; Chapman WW; MacKenzie TA; Brown JR
    JAMA Netw Open; 2021 Jan; 4(1):e2035782. PubMed ID: 33512518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Information Extraction From Electronic Health Records to Predict Readmission Following Acute Myocardial Infarction: Does Natural Language Processing Using Clinical Notes Improve Prediction of Readmission?
    Brown JR; Ricket IM; Reeves RM; Shah RU; Goodrich CA; Gobbel G; Stabler ME; Perkins AM; Minter F; Cox KC; Dorn C; Denton J; Bray BE; Gouripeddi R; Higgins J; Chapman WW; MacKenzie T; Matheny ME
    J Am Heart Assoc; 2022 Apr; 11(7):e024198. PubMed ID: 35322668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and Validation of an Electronic Health Record-Based Machine Learning Model to Estimate Delirium Risk in Newly Hospitalized Patients Without Known Cognitive Impairment.
    Wong A; Young AT; Liang AS; Gonzales R; Douglas VC; Hadley D
    JAMA Netw Open; 2018 Aug; 1(4):e181018. PubMed ID: 30646095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thirty-Day Readmission Risk Model for Older Adults Hospitalized With Acute Myocardial Infarction.
    Dodson JA; Hajduk AM; Murphy TE; Geda M; Krumholz HM; Tsang S; Nanna MG; Tinetti ME; Goldstein D; Forman DE; Alexander KP; Gill TM; Chaudhry SI
    Circ Cardiovasc Qual Outcomes; 2019 May; 12(5):e005320. PubMed ID: 31010300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early identification of patients admitted to hospital for covid-19 at risk of clinical deterioration: model development and multisite external validation study.
    Kamran F; Tang S; Otles E; McEvoy DS; Saleh SN; Gong J; Li BY; Dutta S; Liu X; Medford RJ; Valley TS; West LR; Singh K; Blumberg S; Donnelly JP; Shenoy ES; Ayanian JZ; Nallamothu BK; Sjoding MW; Wiens J
    BMJ; 2022 Feb; 376():e068576. PubMed ID: 35177406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Risk of 30-Day Hospital Readmission Among Patients Discharged to Skilled Nursing Facilities: Development and Validation of a Risk-Prediction Model.
    Chandra A; Rahman PA; Sneve A; McCoy RG; Thorsteinsdottir B; Chaudhry R; Storlie CB; Murphree DH; Hanson GJ; Takahashi PY
    J Am Med Dir Assoc; 2019 Apr; 20(4):444-450.e2. PubMed ID: 30852170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of 30-Day All-Cause Readmissions in Patients Hospitalized for Heart Failure: Comparison of Machine Learning and Other Statistical Approaches.
    Frizzell JD; Liang L; Schulte PJ; Yancy CW; Heidenreich PA; Hernandez AF; Bhatt DL; Fonarow GC; Laskey WK
    JAMA Cardiol; 2017 Feb; 2(2):204-209. PubMed ID: 27784047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using Machine Learning to Predict Likelihood and Cause of Readmission After Hospitalization for Chronic Obstructive Pulmonary Disease Exacerbation.
    Bonomo M; Hermsen MG; Kaskovich S; Hemmrich MJ; Rojas JC; Carey KA; Venable LR; Churpek MM; Press VG
    Int J Chron Obstruct Pulmon Dis; 2022; 17():2701-2709. PubMed ID: 36299799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictive modeling for 14-day unplanned hospital readmission risk by using machine learning algorithms.
    Lo YT; Liao JC; Chen MH; Chang CM; Li CT
    BMC Med Inform Decis Mak; 2021 Oct; 21(1):288. PubMed ID: 34670553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Machine Learning Algorithms for Predicting Readmission After Acute Myocardial Infarction Using Routinely Collected Clinical Data.
    Gupta S; Ko DT; Azizi P; Bouadjenek MR; Koh M; Chong A; Austin PC; Sanner S
    Can J Cardiol; 2020 Jun; 36(6):878-885. PubMed ID: 32204950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and Performance of the Pulmonary Embolism Result Forecast Model (PERFORM) for Computed Tomography Clinical Decision Support.
    Banerjee I; Sofela M; Yang J; Chen JH; Shah NH; Ball R; Mushlin AI; Desai M; Bledsoe J; Amrhein T; Rubin DL; Zamanian R; Lungren MP
    JAMA Netw Open; 2019 Aug; 2(8):e198719. PubMed ID: 31390040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning methods to predict 30-day hospital readmission outcome among US adults with pneumonia: analysis of the national readmission database.
    Huang Y; Talwar A; Lin Y; Aparasu RR
    BMC Med Inform Decis Mak; 2022 Nov; 22(1):288. PubMed ID: 36352392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of a Machine Learning Algorithm Using Electronic Health Record Data to Predict Postoperative Complications and Report on a Mobile Platform.
    Ren Y; Loftus TJ; Datta S; Ruppert MM; Guan Z; Miao S; Shickel B; Feng Z; Giordano C; Upchurch GR; Rashidi P; Ozrazgat-Baslanti T; Bihorac A
    JAMA Netw Open; 2022 May; 5(5):e2211973. PubMed ID: 35576007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictors of 30-Day Mortality Among Dutch Patients Undergoing Colorectal Cancer Surgery, 2011-2016.
    van den Bosch T; Warps AK; de Nerée Tot Babberich MPM; Stamm C; Geerts BF; Vermeulen L; Wouters MWJM; Dekker JWT; Tollenaar RAEM; Tanis PJ; Miedema DM;
    JAMA Netw Open; 2021 Apr; 4(4):e217737. PubMed ID: 33900400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting Intensive Care Unit Readmission with Machine Learning Using Electronic Health Record Data.
    Rojas JC; Carey KA; Edelson DP; Venable LR; Howell MD; Churpek MM
    Ann Am Thorac Soc; 2018 Jul; 15(7):846-853. PubMed ID: 29787309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records.
    Thorsen-Meyer HC; Nielsen AB; Nielsen AP; Kaas-Hansen BS; Toft P; Schierbeck J; Strøm T; Chmura PJ; Heimann M; Dybdahl L; Spangsege L; Hulsen P; Belling K; Brunak S; Perner A
    Lancet Digit Health; 2020 Apr; 2(4):e179-e191. PubMed ID: 33328078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of Machine Learning Methods With Traditional Models for Use of Administrative Claims With Electronic Medical Records to Predict Heart Failure Outcomes.
    Desai RJ; Wang SV; Vaduganathan M; Evers T; Schneeweiss S
    JAMA Netw Open; 2020 Jan; 3(1):e1918962. PubMed ID: 31922560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning-based prediction of in-hospital mortality using admission laboratory data: A retrospective, single-site study using electronic health record data.
    Seki T; Kawazoe Y; Ohe K
    PLoS One; 2021; 16(2):e0246640. PubMed ID: 33544775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Prediction of intensive care unit readmission for critically ill patients based on ensemble learning].
    Lin Y; Wu JY; Lin K; Hu YH; Kong GL
    Beijing Da Xue Xue Bao Yi Xue Ban; 2021 Jun; 53(3):566-572. PubMed ID: 34145862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing readmission prediction models by integrating insights from home healthcare notes: Retrospective cohort study.
    Gan S; Kim C; Chang J; Lee DY; Park RW
    Int J Nurs Stud; 2024 Oct; 158():104850. PubMed ID: 39024965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.