These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 33512576)
1. Eradication of Acinetobacter baumannii Planktonic and Biofilm Cells Through Erythrosine-Mediated Photodynamic Inactivation Augmented by Acetic Acid and Chitosan. Fekrirad Z; Darabpour E; Kashef N Curr Microbiol; 2021 Mar; 78(3):879-886. PubMed ID: 33512576 [TBL] [Abstract][Full Text] [Related]
2. Photodynamic inactivation of virulence factors of Candida strains isolated from patients with denture stomatitis. Pereira CA; Domingues N; Silva MP; Costa AC; Junqueira JC; Jorge AO J Photochem Photobiol B; 2015 Dec; 153():82-9. PubMed ID: 26398815 [TBL] [Abstract][Full Text] [Related]
3. Antimicrobial photodynamic therapy against Lactobacillus casei using curcumin, nano-curcumin, or erythrosine and a dental LED curing device. Ahrari F; Mazhari F; Ghazvini K; Fekrazad R; Menbari S; Nazifi M Lasers Med Sci; 2023 Nov; 38(1):260. PubMed ID: 37946038 [TBL] [Abstract][Full Text] [Related]
4. Anti-Biofilm Effect of Hybrid Nanocomposite Functionalized with Erythrosine B on Bugyna L; Bilská K; Boháč P; Pribus M; Bujdák J; Bujdáková H Molecules; 2024 Aug; 29(16):. PubMed ID: 39202995 [TBL] [Abstract][Full Text] [Related]
5. Antimicrobial Photodynamic Inactivation Mediated by Rose Bengal and Erythrosine Is Effective in the Control of Food-Related Bacteria in Planktonic and Biofilm States. Silva AF; Borges A; Freitas CF; Hioka N; Mikcha JMG; Simões M Molecules; 2018 Sep; 23(9):. PubMed ID: 30205468 [TBL] [Abstract][Full Text] [Related]
6. Chitosan augments photodynamic inactivation of gram-positive and gram-negative bacteria. Tsai T; Chien HF; Wang TH; Huang CT; Ker YB; Chen CT Antimicrob Agents Chemother; 2011 May; 55(5):1883-90. PubMed ID: 21282440 [TBL] [Abstract][Full Text] [Related]
7. Efflux Pump Inhibitor Potentiates the Antimicrobial Photodynamic Inactivation of Multidrug-Resistant Shirdel Z; Fekrirad Z Photobiomodul Photomed Laser Surg; 2024 Apr; 42(4):314-320. PubMed ID: 38536111 [No Abstract] [Full Text] [Related]
8. Increasing photoeradication's efficiency of Acinetobacter baumannii by polyphosphonic chelating agents. Maliszewska I; Goldeman W Photodiagnosis Photodyn Ther; 2023 Sep; 43():103672. PubMed ID: 37364665 [TBL] [Abstract][Full Text] [Related]
9. Photodynamic inactivation mediated by 5-aminolevulinic acid of bacteria in planktonic and biofilm forms. Bohm GC; Gándara L; Di Venosa G; Mamone L; Buzzola F; Casas A Biochem Pharmacol; 2020 Jul; 177():114016. PubMed ID: 32387459 [TBL] [Abstract][Full Text] [Related]
10. Comparative study of methylene blue and erythrosine dyes employed in photodynamic therapy for inactivation of planktonic and biofilm-cultivated Aggregatibacter actinomycetemcomitans. Goulart Rde C; Thedei G; Souza SL; Tedesco AC; Ciancaglini P Photomed Laser Surg; 2010 Aug; 28 Suppl 1():S85-90. PubMed ID: 20649431 [TBL] [Abstract][Full Text] [Related]
11. Dual-Stage Blue-Light-Guided Membrane and DNA-Targeted Photodynamic Inactivation Using Octyl Gallate for Ultraefficient Eradication of Planktonic Bacteria and Sessile Biofilms. Shi YG; Lin S; Chen WX; Jiang L; Gu Q; Li DH; Chen YW J Agric Food Chem; 2022 Jun; 70(24):7547-7565. PubMed ID: 35687111 [TBL] [Abstract][Full Text] [Related]
12. Chitosan nanoparticles enhance the efficiency of methylene blue-mediated antimicrobial photodynamic inactivation of bacterial biofilms: An in vitro study. Darabpour E; Kashef N; Mashayekhan S Photodiagnosis Photodyn Ther; 2016 Jun; 14():211-7. PubMed ID: 27118084 [TBL] [Abstract][Full Text] [Related]
13. Chitosan nanoparticles for antimicrobial photodynamic inactivation: characterization and in vitro investigation. Chen CP; Chen CT; Tsai T Photochem Photobiol; 2012; 88(3):570-6. PubMed ID: 22283820 [TBL] [Abstract][Full Text] [Related]
14. Influence of sucrose on growth and sensitivity of Candida albicans alone and in combination with Enterococcus faecalis and Streptococcus mutans to photodynamic therapy. Tomé FM; Paula Ramos L; Freire F; Pereira CA; de Oliveira ICB; Junqueira JC; Jorge AOC; Oliveira LD Lasers Med Sci; 2017 Aug; 32(6):1237-1243. PubMed ID: 28389898 [TBL] [Abstract][Full Text] [Related]
15. Pentamidine enhances photosensitization of Acinetobacter baumannii using diode lasers with emission of light at wavelength of ʎ = 405 nm and ʎ = 635 nm. Maliszewska I; Goldeman W Photodiagnosis Photodyn Ther; 2021 Jun; 34():102242. PubMed ID: 33662618 [TBL] [Abstract][Full Text] [Related]
16. The use of Chitosan to enhance photodynamic inactivation against Candida albicans and its drug-resistant clinical isolates. Chien HF; Chen CP; Chen YC; Chang PH; Tsai T; Chen CT Int J Mol Sci; 2013 Apr; 14(4):7445-56. PubMed ID: 23552829 [TBL] [Abstract][Full Text] [Related]
17. Photodynamic Inactivation Mediated by Erythrosine and its Derivatives on Foodborne Pathogens and Spoilage Bacteria. Yassunaka NN; Freitas CF; Rabello BR; Santos PR; Caetano W; Hioka N; Nakamura TU; Abreu Filho BA; Graton Mikcha JM Curr Microbiol; 2015 Aug; 71(2):243-51. PubMed ID: 25925153 [TBL] [Abstract][Full Text] [Related]
18. Biofilms of Candida albicans and Streptococcus sanguinis and their susceptibility to antimicrobial effects of photodynamic inactivation. Palma ALDR; Paula-Ramos L; Domingues N; Back-Brito GN; de Oliveira LD; Pereira CA; Jorge AOC Photodiagnosis Photodyn Ther; 2018 Dec; 24():95-101. PubMed ID: 29990641 [TBL] [Abstract][Full Text] [Related]
19. Erythrosine is a potential photosensitizer for the photodynamic therapy of oral plaque biofilms. Wood S; Metcalf D; Devine D; Robinson C J Antimicrob Chemother; 2006 Apr; 57(4):680-4. PubMed ID: 16464894 [TBL] [Abstract][Full Text] [Related]
20. New trends in the development of photodynamic inactivation against planktonic microorganisms and their biofilms in food system. Chen L; Zhao Y; Wu W; Zeng Q; Wang JJ Compr Rev Food Sci Food Saf; 2023 Sep; 22(5):3814-3846. PubMed ID: 37530552 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]