BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 33512663)

  • 1. Herbicide stress-induced DNA methylation changes in two Zea mays inbred lines differing in Roundup® resistance.
    Tyczewska A; Gracz-Bernaciak J; Szymkowiak J; Twardowski T
    J Appl Genet; 2021 May; 62(2):235-248. PubMed ID: 33512663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inter-individual variation in DNA methylation is largely restricted to tissue-specific differentially methylated regions in maize.
    Lauria M; Echegoyen-Nava RA; Rodríguez-Ríos D; Zaina S; Lund G
    BMC Plant Biol; 2017 Feb; 17(1):52. PubMed ID: 28231765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of sulphur and chlorine induced DNA cytosine methylation alterations in fresh corn (Zea mays L. saccharata and rugosa) leaf tissues by methylation sensitive amplification polymorphism (MSAP) approach.
    Zenda T; Liu S; Yao D; Duan H
    Genes Genomics; 2018 Sep; 40(9):913-925. PubMed ID: 30155706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of glutathione S-transferases in the detoxification of metolachlor in two maize cultivars of differing herbicide tolerance.
    Li D; Gao Q; Xu L; Pang S; Liu Z; Wang C; Tan W
    Pestic Biochem Physiol; 2017 Nov; 143():265-271. PubMed ID: 29183603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA methylation changes stimulated by drought stress in ABA-deficient maize mutant vp10.
    Sallam N; Moussa M
    Plant Physiol Biochem; 2021 Mar; 160():218-224. PubMed ID: 33515971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression characterization of the herbicide tolerance gene Aryloxyalkanoate Dioxygenase (aad-1) controlled by seven combinations of regulatory elements.
    Gonzalez DO; Church JB; Robinson A; Connell JP; Sopko M; Rowland B; Woodall K; Larsen CM; Davies JP
    BMC Plant Biol; 2018 Jan; 18(1):14. PubMed ID: 29334902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic and epigenetic variation in transposable element expression responses to abiotic stress in maize.
    Liang Z; Anderson SN; Noshay JM; Crisp PA; Enders TA; Springer NM
    Plant Physiol; 2021 May; 186(1):420-433. PubMed ID: 33591319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism.
    Tan MP
    Plant Physiol Biochem; 2010 Jan; 48(1):21-6. PubMed ID: 19889550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Dynamics of DNA methylation in the maize (Zea mays L.) inbred line B73 response to heat stress at the seedling stage.
    Qian Y; Hu W; Liao J; Zhang J; Ren Q
    Biochem Biophys Res Commun; 2019 May; 512(4):742-749. PubMed ID: 30926168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dynamics of DNA methylation in maize roots under Pb stress.
    Ding H; Gao J; Qin C; Ma H; Huang H; Song P; Luo X; Lin H; Shen Y; Pan G; Zhang Z
    Int J Mol Sci; 2014 Dec; 15(12):23537-54. PubMed ID: 25526567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetic variation, inheritance, and parent-of-origin effects of cytosine methylation in maize (Zea mays).
    Lauria M; Piccinini S; Pirona R; Lund G; Viotti A; Motto M
    Genetics; 2014 Mar; 196(3):653-66. PubMed ID: 24374354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subtle Perturbations of the Maize Methylome Reveal Genes and Transposons Silenced by Chromomethylase or RNA-Directed DNA Methylation Pathways.
    Anderson SN; Zynda GJ; Song J; Han Z; Vaughn MW; Li Q; Springer NM
    G3 (Bethesda); 2018 May; 8(6):1921-1932. PubMed ID: 29618467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maize DNA Methylation in Response to Drought Stress Is Involved in Target Gene Expression and Alternative Splicing.
    Wang Q; Xu J; Pu X; Lv H; Liu Y; Ma H; Wu F; Wang Q; Feng X; Liu T; Tang Q; Liu Y; Lu Y
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34361051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The transcriptome of zinc deficient maize roots and its relationship to DNA methylation loss.
    Mager S; Schönberger B; Ludewig U
    BMC Plant Biol; 2018 Dec; 18(1):372. PubMed ID: 30587136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic Analysis and Fine Mapping of
    Bao J; Gao Y; Li Y; Wu S; Li J; Dong Z; Wan X
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of DNA methylation in different maize tissues.
    Lu Y; Rong T; Cao M
    J Genet Genomics; 2008 Jan; 35(1):41-8. PubMed ID: 18222408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic engineering of maize (Zea mays) for high-level tolerance to treatment with the herbicide dicamba.
    Cao M; Sato SJ; Behrens M; Jiang WZ; Clemente TE; Weeks DP
    J Agric Food Chem; 2011 Jun; 59(11):5830-4. PubMed ID: 21133415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of As2O3 on DNA methylation, genomic instability, and LTR retrotransposon polymorphism in Zea mays.
    Erturk FA; Aydin M; Sigmaz B; Taspinar MS; Arslan E; Agar G; Yagci S
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18601-6. PubMed ID: 26396013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Herbicide resistance screening assay.
    Peterson JM
    Methods Mol Biol; 2009; 526():137-46. PubMed ID: 19378008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MCSeEd (Methylation Context Sensitive Enzyme ddRAD): A New Method to Analyze DNA Methylation.
    Di Marsico M; Cerruti E; Comino C; Porceddu A; Acquadro A; Capomaccio S; Marconi G; Albertini E
    Methods Mol Biol; 2020; 2093():47-64. PubMed ID: 32088888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.