These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 33513003)

  • 1. Trade-off Predictivity and Explainability for Machine-Learning Powered Predictive Toxicology: An in-Depth Investigation with Tox21 Data Sets.
    Wu L; Huang R; Tetko IV; Xia Z; Xu J; Tong W
    Chem Res Toxicol; 2021 Feb; 34(2):541-549. PubMed ID: 33513003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PERform: assessing model performance with predictivity and explainability readiness formula.
    Wu L; Xu J; Tong W
    J Environ Sci Health C Toxicol Carcinog; 2024; 42(4):298-313. PubMed ID: 38619534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Optimal Machine Learning Algorithms and Molecular Fingerprints for Explainable Toxicity Prediction Models Using ToxCast/Tox21 Bioassay Data.
    Kim D; Jeong J; Choi J
    ACS Omega; 2024 Sep; 9(36):37934-37941. PubMed ID: 39281924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying Protein Features and Pathways Responsible for Toxicity Using Machine Learning and Tox21: Implications for Predictive Toxicology.
    Moukheiber L; Mangione W; Moukheiber M; Maleki S; Falls Z; Gao M; Samudrala R
    Molecules; 2022 May; 27(9):. PubMed ID: 35566372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning Explainability in Breast Cancer Survival.
    Jansen T; Geleijnse G; Van Maaren M; Hendriks MP; Ten Teije A; Moncada-Torres A
    Stud Health Technol Inform; 2020 Jun; 270():307-311. PubMed ID: 32570396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LightGBM: An Effective and Scalable Algorithm for Prediction of Chemical Toxicity-Application to the Tox21 and Mutagenicity Data Sets.
    Zhang J; Mucs D; Norinder U; Svensson F
    J Chem Inf Model; 2019 Oct; 59(10):4150-4158. PubMed ID: 31560206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of Oral Pharmacokinetics Using a Combination of In Silico Descriptors and In Vitro ADME Properties.
    Kosugi Y; Hosea N
    Mol Pharm; 2021 Mar; 18(3):1071-1079. PubMed ID: 33512165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformal Prediction Classification of a Large Data Set of Environmental Chemicals from ToxCast and Tox21 Estrogen Receptor Assays.
    Norinder U; Boyer S
    Chem Res Toxicol; 2016 Jun; 29(6):1003-10. PubMed ID: 27152554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Performance Prediction of Human Estrogen Receptor Agonists Based on Chemical Structures.
    Asako Y; Uesawa Y
    Molecules; 2017 Apr; 22(4):. PubMed ID: 28441746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Machine Learning Algorithms and Explainability Techniques to Detect Hearing Loss From a Speech-in-Noise Screening Test.
    Lenatti M; Moreno-Sánchez PA; Polo EM; Mollura M; Barbieri R; Paglialonga A
    Am J Audiol; 2022 Sep; 31(3S):961-979. PubMed ID: 35877954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the explainability of Random Forest classifier - user centered approach.
    Petkovic D; Altman R; Wong M; Vigil A
    Pac Symp Biocomput; 2018; 23():204-215. PubMed ID: 29218882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Explaining the Rationale of Deep Learning Glaucoma Decisions with Adversarial Examples.
    Chang J; Lee J; Ha A; Han YS; Bak E; Choi S; Yun JM; Kang U; Shin IH; Shin JY; Ko T; Bae YS; Oh BL; Park KH; Park SM
    Ophthalmology; 2021 Jan; 128(1):78-88. PubMed ID: 32598951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binary classification of a large collection of environmental chemicals from estrogen receptor assays by quantitative structure-activity relationship and machine learning methods.
    Zang Q; Rotroff DM; Judson RS
    J Chem Inf Model; 2013 Dec; 53(12):3244-61. PubMed ID: 24279462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a Battery of
    Rathman J; Yang C; Ribeiro JV; Mostrag A; Thakkar S; Tong W; Hobocienski B; Sacher O; Magdziarz T; Bienfait B
    Chem Res Toxicol; 2021 Feb; 34(2):601-615. PubMed ID: 33356149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the Predictive Performance and Interpretability of Random Forest and Linear Models on Benchmark Data Sets.
    Marchese Robinson RL; Palczewska A; Palczewski J; Kidley N
    J Chem Inf Model; 2017 Aug; 57(8):1773-1792. PubMed ID: 28715209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and validation of an in silico toxicology model to predict the mutagenic potential of drug impurities.
    Valerio LG; Cross KP
    Toxicol Appl Pharmacol; 2012 May; 260(3):209-21. PubMed ID: 22426359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative structure-activity relationship models for predicting drug-induced liver injury based on FDA-approved drug labeling annotation and using a large collection of drugs.
    Chen M; Hong H; Fang H; Kelly R; Zhou G; Borlak J; Tong W
    Toxicol Sci; 2013 Nov; 136(1):242-9. PubMed ID: 23997115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct Comparison of Total Clearance Prediction: Computational Machine Learning Model versus Bottom-Up Approach Using In Vitro Assay.
    Kosugi Y; Hosea N
    Mol Pharm; 2020 Jul; 17(7):2299-2309. PubMed ID: 32478525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Silico Prediction of Compounds Binding to Human Plasma Proteins by QSAR Models.
    Sun L; Yang H; Li J; Wang T; Li W; Liu G; Tang Y
    ChemMedChem; 2018 Mar; 13(6):572-581. PubMed ID: 29057587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Informing the Human Plasma Protein Binding of Environmental Chemicals by Machine Learning in the Pharmaceutical Space: Applicability Domain and Limits of Predictability.
    Ingle BL; Veber BC; Nichols JW; Tornero-Velez R
    J Chem Inf Model; 2016 Nov; 56(11):2243-2252. PubMed ID: 27684444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.