These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 33513158)

  • 1. Transcriptomic analysis reveals key transcription factors associated to drought tolerance in a wild papaya (Carica papaya) genotype.
    Estrella-Maldonado H; Ramírez AG; Ortiz GF; Peraza-Echeverría S; Martínez-de la Vega O; Góngora-Castillo E; Santamaría JM
    PLoS One; 2021; 16(1):e0245855. PubMed ID: 33513158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-Wide Analysis of WRKY and NAC Transcription Factors in
    Arroyo-Álvarez E; Chan-León A; Girón-Ramírez A; Fuentes G; Estrella-Maldonado H; Santamaría JM
    Plants (Basel); 2023 Jul; 12(15):. PubMed ID: 37570929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptomics and co-expression networks reveal tissue-specific responses and regulatory hubs under mild and severe drought in papaya (Carica papaya L.).
    Gamboa-Tuz SD; Pereira-Santana A; Zamora-Briseño JA; Castano E; Espadas-Gil F; Ayala-Sumuano JT; Keb-Llanes MÁ; Sanchez-Teyer F; Rodríguez-Zapata LC
    Sci Rep; 2018 Sep; 8(1):14539. PubMed ID: 30267030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and expression of C2H2 transcription factor genes in Carica papaya under abiotic and biotic stresses.
    Jiang L; Pan LJ
    Mol Biol Rep; 2012 Jun; 39(6):7105-15. PubMed ID: 22484790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and expression of the WRKY transcription factors of Carica papaya in response to abiotic and biotic stresses.
    Pan LJ; Jiang L
    Mol Biol Rep; 2014 Mar; 41(3):1215-25. PubMed ID: 24390238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome analysis provides insights into the delayed sticky disease symptoms in Carica papaya.
    Madroñero J; Rodrigues SP; Antunes TFS; Abreu PMV; Ventura JA; Fernandes AAR; Fernandes PMB
    Plant Cell Rep; 2018 Jul; 37(7):967-980. PubMed ID: 29564545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative transcriptome profiles of the WRKY gene family under control, hormone-treated, and drought conditions in near-isogenic rice lines reveal differential, tissue specific gene activation.
    Nuruzzaman M; Sharoni AM; Satoh K; Kumar A; Leung H; Kikuchi S
    J Plant Physiol; 2014 Jan; 171(1):2-13. PubMed ID: 24189206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential gene expression among three sex types reveals a MALE STERILITY 1 (CpMS1) for sex differentiation in papaya.
    Zerpa-Catanho D; Wai J; Wang ML; Yu L; Nguyen J; Ming R
    BMC Plant Biol; 2019 Dec; 19(1):545. PubMed ID: 31818257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characterization of ethylene response factor family genes during development, ethylene regulation and stress treatments in papaya fruit.
    Li X; Zhu X; Mao J; Zou Y; Fu D; Chen W; Lu W
    Plant Physiol Biochem; 2013 Sep; 70():81-92. PubMed ID: 23770597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and Expression Analyses of the Special 14-3-3 Gene Family in Papaya and its Involvement in Fruit Development, Ripening, and Abiotic Stress Responses.
    Li M; Ren L; Zou Z; Hu W; Xiao S; Yang X; Ding Z; Yan Y; Tie W; Yang J; Guo A
    Biochem Genet; 2021 Dec; 59(6):1599-1616. PubMed ID: 34009493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico cloning and characterization of the TGA (TGACG MOTIF-BINDING FACTOR) transcription factors subfamily in Carica papaya.
    Idrovo Espín FM; Peraza-Echeverria S; Fuentes G; Santamaría JM
    Plant Physiol Biochem; 2012 May; 54():113-22. PubMed ID: 22410205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Root system architecture, physiological analysis and dynamic transcriptomics unravel the drought-responsive traits in rice genotypes.
    Tiwari P; Srivastava D; Chauhan AS; Indoliya Y; Singh PK; Tiwari S; Fatima T; Mishra SK; Dwivedi S; Agarwal L; Singh PC; Asif MH; Tripathi RD; Shirke PA; Chakrabarty D; Chauhan PS; Nautiyal CS
    Ecotoxicol Environ Saf; 2021 Jan; 207():111252. PubMed ID: 32916530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcription Factor CpbHLH3 and
    Wang N; Nian Y; Li R; Shao Y; Li W
    J Agric Food Chem; 2022 Aug; 70(32):9919-9930. PubMed ID: 35921197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of Meiosis in Nonmodel Tropical Plants: The Case of Carica papaya Linn.
    Mora-Calderón J; Scott-Moraga K; Bolaños-Villegas P
    Methods Mol Biol; 2020; 2061():131-139. PubMed ID: 31583657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene co-expression analysis reveals transcriptome divergence between wild and cultivated chickpea under drought stress.
    Moenga SM; Gai Y; Carrasquilla-Garcia N; Perilla-Henao LM; Cook DR
    Plant J; 2020 Dec; 104(5):1195-1214. PubMed ID: 32920943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RAP2.4a Is Transported through the Phloem to Regulate Cold and Heat Tolerance in Papaya Tree (Carica papaya cv. Maradol): Implications for Protection Against Abiotic Stress.
    Figueroa-Yañez L; Pereira-Santana A; Arroyo-Herrera A; Rodriguez-Corona U; Sanchez-Teyer F; Espadas-Alcocer J; Espadas-Gil F; Barredo-Pool F; Castaño E; Rodriguez-Zapata LC
    PLoS One; 2016; 11(10):e0165030. PubMed ID: 27764197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative transcriptomic analysis of contrasting hybrid cultivars reveal key drought-responsive genes and metabolic pathways regulating drought stress tolerance in maize at various stages.
    Liu S; Zenda T; Li J; Wang Y; Liu X; Duan H
    PLoS One; 2020; 15(10):e0240468. PubMed ID: 33057352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Key Maize Drought-Responsive Genes and Pathways Revealed by Comparative Transcriptome and Physiological Analyses of Contrasting Inbred Lines.
    Zenda T; Liu S; Wang X; Liu G; Jin H; Dong A; Yang Y; Duan H
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30871211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The high content of β-carotene present in orange-pulp fruits of Carica papaya L. is not correlated with a high expression of the CpLCY-β2 gene.
    Chan-León AC; Estrella-Maldonado H; Dubé P; Fuentes Ortiz G; Espadas-Gil F; Talavera May C; Ramírez Prado J; Desjardins Y; Santamaría JM
    Food Res Int; 2017 Oct; 100(Pt 2):45-56. PubMed ID: 28888458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Root transcriptome profiling of contrasting wheat genotypes provides an insight to their adaptive strategies to water deficit.
    Mia MS; Liu H; Wang X; Zhang C; Yan G
    Sci Rep; 2020 Mar; 10(1):4854. PubMed ID: 32184417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.