These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 3351332)
1. Ontogeny of structural components at the dermal-epidermal junction in human embryonic and fetal skin: the appearance of anchoring fibrils and type VII collagen. Smith LT; Sakai LY; Burgeson RE; Holbrook KA J Invest Dermatol; 1988 Apr; 90(4):480-5. PubMed ID: 3351332 [TBL] [Abstract][Full Text] [Related]
2. Collagen types I, III, and V in human embryonic and fetal skin. Smith LT; Holbrook KA; Madri JA Am J Anat; 1986 Apr; 175(4):507-21. PubMed ID: 3521252 [TBL] [Abstract][Full Text] [Related]
3. Structural variations in anchoring fibrils in dystrophic epidermolysis bullosa: correlation with type VII collagen expression. McGrath JA; Ishida-Yamamoto A; O'Grady A; Leigh IM; Eady RA J Invest Dermatol; 1993 Apr; 100(4):366-72. PubMed ID: 8454899 [TBL] [Abstract][Full Text] [Related]
4. Type VII collagen forms an extended network of anchoring fibrils. Keene DR; Sakai LY; Lunstrum GP; Morris NP; Burgeson RE J Cell Biol; 1987 Mar; 104(3):611-21. PubMed ID: 3818794 [TBL] [Abstract][Full Text] [Related]
5. Patterns of type VI collagen compared to types I, III and V collagen in human embryonic and fetal skin and in fetal skin-derived cell cultures. Smith LT Matrix Biol; 1994 Mar; 14(2):159-70. PubMed ID: 8061928 [TBL] [Abstract][Full Text] [Related]
6. Alterations of basement membrane zone in bullous and non-bullous variants of extragenital lichen sclerosus. Kowalewski C; Kozlowska A; Zawadzka M; Woźniak K; Blaszczyk M; Jablońska S Am J Dermatopathol; 2004 Apr; 26(2):96-101. PubMed ID: 15024189 [TBL] [Abstract][Full Text] [Related]
7. Key role of heparan sulfate chains in assembly of anchoring complex at the dermal-epidermal junction. Iriyama S; Tsunenaga M; Amano S; Adachi E Exp Dermatol; 2011 Nov; 20(11):953-5. PubMed ID: 21824201 [TBL] [Abstract][Full Text] [Related]
8. Most anchoring fibrils in human skin originate and terminate in the lamina densa. Shimizu H; Ishiko A; Masunaga T; Kurihara Y; Sato M; Bruckner-Tuderman L; Nishikawa T Lab Invest; 1997 Jun; 76(6):753-63. PubMed ID: 9194852 [TBL] [Abstract][Full Text] [Related]
9. The appearance of four basement membrane zone antigens in developing human fetal skin. Fine JD; Smith LT; Holbrook KA; Katz SI J Invest Dermatol; 1984 Jul; 83(1):66-9. PubMed ID: 6376641 [TBL] [Abstract][Full Text] [Related]
10. Formation and origin of basal lamina and anchoring fibrils in adult human skin. Briggaman RA; Dalldorf FG; Wheeler CE J Cell Biol; 1971 Nov; 51(21):384-95. PubMed ID: 4939526 [TBL] [Abstract][Full Text] [Related]
11. Ontogenesis of the basement membrane zone after grafting cultured human epithelium: a morphologic and immunoelectron microscopic study. Mommaas AM; Teepe RG; Leigh IM; Mulder AA; Koebrugge EJ; Vermeer BJ J Invest Dermatol; 1992 Jul; 99(1):71-7. PubMed ID: 1607680 [TBL] [Abstract][Full Text] [Related]
12. Mesenchymal-epithelial interactions regulate gene expression of type VII collagen and kalinin in keratinocytes and dermal-epidermal junction formation in a skin equivalent model. Sahuc F; Nakazawa K; Berthod F; Collombel C; Damour O Wound Repair Regen; 1996; 4(1):93-102. PubMed ID: 17129354 [TBL] [Abstract][Full Text] [Related]
13. The effects of epidermal keratinocytes and dermal fibroblasts on the formation of cutaneous basement membrane in three-dimensional culture systems. Lee DY; Cho KH Arch Dermatol Res; 2005 Jan; 296(7):296-302. PubMed ID: 15650892 [TBL] [Abstract][Full Text] [Related]
14. Application and limitations of three-dimensional reconstruction of the epidermal-dermal junction using electron microscopy. Ishii N; Nakane H; Ishida-Yamamoto A J Dermatol Sci; 2003 Sep; 32(3):231-5. PubMed ID: 14507449 [TBL] [Abstract][Full Text] [Related]
15. Scanning electron microscopy of the epidermal lamina densa in normal human skin. Mihara M; Miura M; Suyama Y; Shimao S J Invest Dermatol; 1992 Nov; 99(5):572-8. PubMed ID: 1431219 [TBL] [Abstract][Full Text] [Related]
16. Making more matrix: enhancing the deposition of dermal-epidermal junction components in vitro and accelerating organotypic skin culture development, using macromolecular crowding. Benny P; Badowski C; Lane EB; Raghunath M Tissue Eng Part A; 2015 Jan; 21(1-2):183-92. PubMed ID: 25058150 [TBL] [Abstract][Full Text] [Related]
17. Intra-epidermal retention of type VII collagen in a patient with recessive dystrophic epidermolysis bullosa. Smith LT; Sybert VP J Invest Dermatol; 1990 Feb; 94(2):261-4. PubMed ID: 2299201 [TBL] [Abstract][Full Text] [Related]
18. The epidermal basement membrane: structure, ontogeny and role in disease. Katz SI Ciba Found Symp; 1984; 108():243-59. PubMed ID: 6394239 [TBL] [Abstract][Full Text] [Related]
19. Development of the basement membrane and formation of collagen fibrils below the placodes in the head of anuran larvae. Osawa T; Feng XY; Yamamoto M; Nozaka M; Nozaka Y J Morphol; 2003 Feb; 255(2):244-52. PubMed ID: 12474269 [TBL] [Abstract][Full Text] [Related]
20. Epidermolysis bullosa acquisita antigen and the carboxy terminus of type VII collagen have a common immunolocalization to anchoring fibrils and lamina densa of basement membrane. Shimizu H; McDonald JN; Gunner DB; Black MM; Bhogal B; Leigh IM; Whitehead PC; Eady RA Br J Dermatol; 1990 May; 122(5):577-85. PubMed ID: 2354110 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]