BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 3351332)

  • 1. Ontogeny of structural components at the dermal-epidermal junction in human embryonic and fetal skin: the appearance of anchoring fibrils and type VII collagen.
    Smith LT; Sakai LY; Burgeson RE; Holbrook KA
    J Invest Dermatol; 1988 Apr; 90(4):480-5. PubMed ID: 3351332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collagen types I, III, and V in human embryonic and fetal skin.
    Smith LT; Holbrook KA; Madri JA
    Am J Anat; 1986 Apr; 175(4):507-21. PubMed ID: 3521252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural variations in anchoring fibrils in dystrophic epidermolysis bullosa: correlation with type VII collagen expression.
    McGrath JA; Ishida-Yamamoto A; O'Grady A; Leigh IM; Eady RA
    J Invest Dermatol; 1993 Apr; 100(4):366-72. PubMed ID: 8454899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Type VII collagen forms an extended network of anchoring fibrils.
    Keene DR; Sakai LY; Lunstrum GP; Morris NP; Burgeson RE
    J Cell Biol; 1987 Mar; 104(3):611-21. PubMed ID: 3818794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patterns of type VI collagen compared to types I, III and V collagen in human embryonic and fetal skin and in fetal skin-derived cell cultures.
    Smith LT
    Matrix Biol; 1994 Mar; 14(2):159-70. PubMed ID: 8061928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alterations of basement membrane zone in bullous and non-bullous variants of extragenital lichen sclerosus.
    Kowalewski C; Kozlowska A; Zawadzka M; Woźniak K; Blaszczyk M; Jablońska S
    Am J Dermatopathol; 2004 Apr; 26(2):96-101. PubMed ID: 15024189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Key role of heparan sulfate chains in assembly of anchoring complex at the dermal-epidermal junction.
    Iriyama S; Tsunenaga M; Amano S; Adachi E
    Exp Dermatol; 2011 Nov; 20(11):953-5. PubMed ID: 21824201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Most anchoring fibrils in human skin originate and terminate in the lamina densa.
    Shimizu H; Ishiko A; Masunaga T; Kurihara Y; Sato M; Bruckner-Tuderman L; Nishikawa T
    Lab Invest; 1997 Jun; 76(6):753-63. PubMed ID: 9194852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The appearance of four basement membrane zone antigens in developing human fetal skin.
    Fine JD; Smith LT; Holbrook KA; Katz SI
    J Invest Dermatol; 1984 Jul; 83(1):66-9. PubMed ID: 6376641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation and origin of basal lamina and anchoring fibrils in adult human skin.
    Briggaman RA; Dalldorf FG; Wheeler CE
    J Cell Biol; 1971 Nov; 51(21):384-95. PubMed ID: 4939526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ontogenesis of the basement membrane zone after grafting cultured human epithelium: a morphologic and immunoelectron microscopic study.
    Mommaas AM; Teepe RG; Leigh IM; Mulder AA; Koebrugge EJ; Vermeer BJ
    J Invest Dermatol; 1992 Jul; 99(1):71-7. PubMed ID: 1607680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesenchymal-epithelial interactions regulate gene expression of type VII collagen and kalinin in keratinocytes and dermal-epidermal junction formation in a skin equivalent model.
    Sahuc F; Nakazawa K; Berthod F; Collombel C; Damour O
    Wound Repair Regen; 1996; 4(1):93-102. PubMed ID: 17129354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of epidermal keratinocytes and dermal fibroblasts on the formation of cutaneous basement membrane in three-dimensional culture systems.
    Lee DY; Cho KH
    Arch Dermatol Res; 2005 Jan; 296(7):296-302. PubMed ID: 15650892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application and limitations of three-dimensional reconstruction of the epidermal-dermal junction using electron microscopy.
    Ishii N; Nakane H; Ishida-Yamamoto A
    J Dermatol Sci; 2003 Sep; 32(3):231-5. PubMed ID: 14507449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scanning electron microscopy of the epidermal lamina densa in normal human skin.
    Mihara M; Miura M; Suyama Y; Shimao S
    J Invest Dermatol; 1992 Nov; 99(5):572-8. PubMed ID: 1431219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Making more matrix: enhancing the deposition of dermal-epidermal junction components in vitro and accelerating organotypic skin culture development, using macromolecular crowding.
    Benny P; Badowski C; Lane EB; Raghunath M
    Tissue Eng Part A; 2015 Jan; 21(1-2):183-92. PubMed ID: 25058150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intra-epidermal retention of type VII collagen in a patient with recessive dystrophic epidermolysis bullosa.
    Smith LT; Sybert VP
    J Invest Dermatol; 1990 Feb; 94(2):261-4. PubMed ID: 2299201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The epidermal basement membrane: structure, ontogeny and role in disease.
    Katz SI
    Ciba Found Symp; 1984; 108():243-59. PubMed ID: 6394239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of the basement membrane and formation of collagen fibrils below the placodes in the head of anuran larvae.
    Osawa T; Feng XY; Yamamoto M; Nozaka M; Nozaka Y
    J Morphol; 2003 Feb; 255(2):244-52. PubMed ID: 12474269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epidermolysis bullosa acquisita antigen and the carboxy terminus of type VII collagen have a common immunolocalization to anchoring fibrils and lamina densa of basement membrane.
    Shimizu H; McDonald JN; Gunner DB; Black MM; Bhogal B; Leigh IM; Whitehead PC; Eady RA
    Br J Dermatol; 1990 May; 122(5):577-85. PubMed ID: 2354110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.