These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
380 related articles for article (PubMed ID: 33513471)
21. Modification of Multiwalled Carbon Nanotubes and Their Mechanism of Demanganization. Zhou Y; He Y; Wang R; Mao Y; Bai J; Dou Y Molecules; 2023 Feb; 28(4):. PubMed ID: 36838859 [TBL] [Abstract][Full Text] [Related]
22. Adsorption of anti-inflammatory and analgesic drugs traces in water on clay minerals. Mansouri F; Chouchene K; Wali A; Labille J; Roche N; Ksibi M Chemosphere; 2024 Apr; 353():141469. PubMed ID: 38387661 [TBL] [Abstract][Full Text] [Related]
23. Electrochemically enhanced adsorption of nonylphenol on carbon nanotubes: Kinetics and isotherms study. Li X; Chen S; Li L; Quan X; Zhao H J Colloid Interface Sci; 2014 Feb; 415():159-64. PubMed ID: 24267343 [TBL] [Abstract][Full Text] [Related]
24. Phosphine functionalised multiwalled carbon nanotubes: a new adsorbent for the removal of nickel from aqueous solution. Adolph MA; Xavier YM; Kriveshini P; Rui K J Environ Sci (China); 2012; 24(6):1133-41. PubMed ID: 23505882 [TBL] [Abstract][Full Text] [Related]
25. Removal of 1-naphthylamine from aqueous solution by multiwall carbon nanotubes/iron oxides/cyclodextrin composite. Hu J; Shao D; Chen C; Sheng G; Ren X; Wang X J Hazard Mater; 2011 Jan; 185(1):463-71. PubMed ID: 20932642 [TBL] [Abstract][Full Text] [Related]
26. One-Step Carbon Coating and Polyacrylamide Functionalization of Fe₃O₄ Nanoparticles for Enhancing Magnetic Adsorptive-Remediation of Heavy Metals. Habila MA; ALOthman ZA; El-Toni AM; Labis JP; Khan A; Al-Marghany A; Elafifi HE Molecules; 2017 Nov; 22(12):. PubMed ID: 29186894 [TBL] [Abstract][Full Text] [Related]
27. Removal of sunset yellow FCF from aqueous solution using polyethyleneimine-modified MWCNTs. Gao H; Zhang L; Liao Y Water Sci Technol; 2016; 73(6):1269-78. PubMed ID: 27003066 [TBL] [Abstract][Full Text] [Related]
28. Preparation, characterization, adsorption kinetics and thermodynamics of novel magnetic chitosan enwrapping nanosized gamma-Fe2O3 and multi-walled carbon nanotubes with enhanced adsorption properties for methyl orange. Zhu HY; Jiang R; Xiao L; Zeng GM Bioresour Technol; 2010 Jul; 101(14):5063-9. PubMed ID: 20219366 [TBL] [Abstract][Full Text] [Related]
29. A response surface methodology for optimization of 2,4-dichlorophenoxyacetic acid removal from synthetic and drainage water: a comparative study. Amiri MJ; Bahrami M; Beigzadeh B; Gil A Environ Sci Pollut Res Int; 2018 Dec; 25(34):34277-34293. PubMed ID: 30291615 [TBL] [Abstract][Full Text] [Related]
30. Postsynthetically Modified Cationic, Robust MOF Featuring Selective Separation of Carboxylate-Containing Pharmaceutical Drugs from Water at Neutral pH: Elucidation of the Adsorption Mechanism by Theory and Experiments. Mukherjee S; Borah PP; Bhattacharyya K; Biswas S Inorg Chem; 2024 Aug; 63(33):15421-15432. PubMed ID: 39115163 [TBL] [Abstract][Full Text] [Related]
31. Chitosan Film as Eco-Friendly and Recyclable Bio-Adsorbent to Remove/Recover Diclofenac, Ketoprofen, and their Mixture from Wastewater. Rizzi V; Romanazzi F; Gubitosa J; Fini P; Romita R; Agostiano A; Petrella A; Cosma P Biomolecules; 2019 Oct; 9(10):. PubMed ID: 31590344 [TBL] [Abstract][Full Text] [Related]
32. Removal of methyl blue from aqueous solution by magnetic carbon nanotube. Wang S; Gao Q; Luo WJ; Xu J; Zhou CG; Xia H Water Sci Technol; 2013; 68(3):665-73. PubMed ID: 23925196 [TBL] [Abstract][Full Text] [Related]
33. Effective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum husk. Franco DSP; Georgin J; Netto MS; Foletto EL; Allasia D; Oliveira MLS; Pinto D; Dotto GL Environ Sci Pollut Res Int; 2022 May; 29(21):31085-31098. PubMed ID: 35000165 [TBL] [Abstract][Full Text] [Related]
34. Sorption of 243Am(III) to multiwall carbon nanotubes. Wang X; Chen C; Hu W; Ding A; Xu D; Zhou X Environ Sci Technol; 2005 Apr; 39(8):2856-60. PubMed ID: 15884386 [TBL] [Abstract][Full Text] [Related]
35. Rapid method for the separation and recovery of endocrine-disrupting compound bisphenol AP from wastewater. Zhang L; Fang P; Yang L; Zhang J; Wang X Langmuir; 2013 Mar; 29(12):3968-75. PubMed ID: 23445219 [TBL] [Abstract][Full Text] [Related]
36. Removal behaviour of NSAIDs from wastewater using a P-functionalised microporous carbon. Pap S; Taggart MA; Shearer L; Li Y; Radovic S; Turk Sekulic M Chemosphere; 2021 Feb; 264(Pt 1):128439. PubMed ID: 33011477 [TBL] [Abstract][Full Text] [Related]
37. The occurrence of non-steroidal anti-inflammatory drugs (NSAIDs) in Malaysian urban domestic wastewater. Mohd Hanafiah Z; Wan Mohtar WHM; Abd Manan TSB; Bachi' NA; Abdullah NA; Abd Hamid HH; Beddu S; Mohd Kamal NL; Ahmad A; Wan Rasdi N Chemosphere; 2022 Jan; 287(Pt 2):132134. PubMed ID: 34517236 [TBL] [Abstract][Full Text] [Related]
38. Removal of hazardous non-steroidal anti-inflammatory drugs from aqueous solutions by biosorbent based on chitin and lignin. Żółtowska-Aksamitowska S; Bartczak P; Zembrzuska J; Jesionowski T Sci Total Environ; 2018 Jan; 612():1223-1233. PubMed ID: 28892866 [TBL] [Abstract][Full Text] [Related]
39. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions. Ijagbemi CO; Baek MH; Kim DS J Hazard Mater; 2009 Jul; 166(1):538-46. PubMed ID: 19131158 [TBL] [Abstract][Full Text] [Related]