These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 3351372)

  • 1. Phase space electroencephalography (EEG): a new mode of intraoperative EEG analysis.
    Watt RC; Hameroff SR
    Int J Clin Monit Comput; 1988; 5(1):3-13. PubMed ID: 3351372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isomap approach to EEG-based assessment of neurophysiological changes during anesthesia.
    Kortelainen J; Vayrynen E; Seppanen T
    IEEE Trans Neural Syst Rehabil Eng; 2011 Apr; 19(2):113-20. PubMed ID: 21147597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing Awake and Anesthetized States Using a Dimensionality Reduction Method.
    Mirsadeghi M; Behnam H; Shalbaf R; Jelveh Moghadam H
    J Med Syst; 2016 Jan; 40(1):13. PubMed ID: 26573650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring the Depth of Anesthesia Using a New Adaptive Neurofuzzy System.
    Shalbaf A; Saffar M; Sleigh JW; Shalbaf R
    IEEE J Biomed Health Inform; 2018 May; 22(3):671-677. PubMed ID: 28574372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guidelines for intraoperative neuromonitoring using raw (analog or digital waveforms) and quantitative electroencephalography: a position statement by the American Society of Neurophysiological Monitoring.
    Isley MR; Edmonds HL; Stecker M;
    J Clin Monit Comput; 2009 Dec; 23(6):369-90. PubMed ID: 19757102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Monitoring the depth of anesthesia using a fuzzy neural network based on EEG].
    Li M; Ye ZQ
    Zhongguo Yi Liao Qi Xie Za Zhi; 2006 Jul; 30(4):253-5. PubMed ID: 17039930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deterministic chaos and the first positive Lyapunov exponent: a nonlinear analysis of the human electroencephalogram during sleep.
    Fell J; Röschke J; Beckmann P
    Biol Cybern; 1993; 69(2):139-46. PubMed ID: 8373884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using EEG to monitor anesthesia drug effects during surgery.
    Jameson LC; Sloan TB
    J Clin Monit Comput; 2006 Dec; 20(6):445-72. PubMed ID: 17103250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computerized monitoring of the EMG and EEG during anesthesia. An evaluation of the anesthesia and brain activity monitor (ABM).
    Edmonds HL; Paloheimo M
    Int J Clin Monit Comput; 1985; 1(4):201-10. PubMed ID: 3836284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The effect of anesthetic concentration on burst-suppression of the EEG in rats].
    Zhang D; Jia X; Ding H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Apr; 29(2):223-8, 232. PubMed ID: 22616162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time segmentation of burst suppression patterns in critical care EEG monitoring.
    Brandon Westover M; Shafi MM; Ching S; Chemali JJ; Purdon PL; Cash SS; Brown EN
    J Neurosci Methods; 2013 Sep; 219(1):131-41. PubMed ID: 23891828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved spectrum analysis in EEG for measure of depth of anesthesia based on phase-rectified signal averaging.
    Liu Q; Chen YF; Fan SZ; Abbod MF; Shieh JS
    Physiol Meas; 2017 Feb; 38(2):116-138. PubMed ID: 28033111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EEG complexity as a measure of depth of anesthesia for patients.
    Zhang XS; Roy RJ; Jensen EW
    IEEE Trans Biomed Eng; 2001 Dec; 48(12):1424-33. PubMed ID: 11759923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring the depth of anesthesia using entropy features and an artificial neural network.
    Shalbaf R; Behnam H; Sleigh JW; Steyn-Ross A; Voss LJ
    J Neurosci Methods; 2013 Aug; 218(1):17-24. PubMed ID: 23567809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Intraoperative EEG monitoring using a neural network].
    Eckert O; Werry C; Neulinger A; Pichlmayr I
    Biomed Tech (Berl); 1997 Apr; 42(4):78-84. PubMed ID: 9235113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic classification of background EEG activity in healthy and sick neonates.
    Löfhede J; Thordstein M; Löfgren N; Flisberg A; Rosa-Zurera M; Kjellmer I; Lindecrantz K
    J Neural Eng; 2010 Feb; 7(1):16007. PubMed ID: 20075506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surrogate data modeling the relationship between high frequency amplitudes and Higuchi fractal dimension of EEG signals in anesthetized rats.
    Spasic S; Kalauzi A; Kesic S; Obradovic M; Saponjic J
    J Theor Biol; 2011 Nov; 289():160-6. PubMed ID: 21920374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A preliminary evaluation of a new derived EEG index monitor in anesthetized patients.
    Willmann K; Springman S; Rusy D; Daily E
    J Clin Monit Comput; 2002 Aug; 17(6):345-50. PubMed ID: 12885178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How electroencephalography serves the anesthesiologist.
    Marchant N; Sanders R; Sleigh J; Vanhaudenhuyse A; Bruno MA; Brichant JF; Laureys S; Bonhomme V
    Clin EEG Neurosci; 2014 Jan; 45(1):22-32. PubMed ID: 24415399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer-Aided Diagnosis of Depression Using EEG Signals.
    Acharya UR; Sudarshan VK; Adeli H; Santhosh J; Koh JE; Adeli A
    Eur Neurol; 2015; 73(5-6):329-36. PubMed ID: 25997732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.