These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 33513876)
1. Melt- vs. Non-Melt Blending of Complexly Processable Ultra-High Molecular Weight Polyethylene/Cellulose Nanofiber Bionanocomposite. Sharip NS; Ariffin H; Yasim-Anuar TAT; Andou Y; Shirosaki Y; Jawaid M; Tahir PM; Ibrahim NA Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33513876 [TBL] [Abstract][Full Text] [Related]
2. Process Optimization of Ultra-High Molecular Weight Polyethylene/Cellulose Nanofiber Bionanocomposites in Triple Screw Kneading Extruder by Response Surface Methodology. Sharip NS; Ariffin H; Andou Y; Shirosaki Y; Bahrin EK; Jawaid M; Tahir PM; Ibrahim NA Molecules; 2020 Sep; 25(19):. PubMed ID: 33008017 [TBL] [Abstract][Full Text] [Related]
3. Optimization of Cellulose Nanofiber Loading and Processing Conditions during Melt Extrusion of Poly(3-hydroxybutyrate- Shazleen SS; Sabaruddin FA; Ando Y; Ariffin H Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771971 [TBL] [Abstract][Full Text] [Related]
4. Mechanical properties and biocompatibility of melt processed, self-reinforced ultrahigh molecular weight polyethylene. Huang YF; Xu JZ; Li JS; He BX; Xu L; Li ZM Biomaterials; 2014 Aug; 35(25):6687-97. PubMed ID: 24835044 [TBL] [Abstract][Full Text] [Related]
5. Well-Dispersed Cellulose Nanofiber in Low Density Polyethylene Nanocomposite by Liquid-Assisted Extrusion. Yasim-Anuar TAT; Ariffin H; Norrrahim MNF; Hassan MA; Andou Y; Tsukegi T; Nishida H Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32316664 [TBL] [Abstract][Full Text] [Related]
6. Functionality of Cellulose Nanofiber as Bio-Based Nucleating Agent and Nano-Reinforcement Material to Enhance Crystallization and Mechanical Properties of Polylactic Acid Nanocomposite. Shazleen SS; Yasim-Anuar TAT; Ibrahim NA; Hassan MA; Ariffin H Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33513688 [TBL] [Abstract][Full Text] [Related]
7. Crystal Structure Evolution of UHMWPE/HDPE Blend Fibers Prepared by Melt Spinning. Wang F; Liu L; Xue P; Jia M Polymers (Basel); 2017 Mar; 9(3):. PubMed ID: 30970777 [TBL] [Abstract][Full Text] [Related]
8. Effect of Nano-SiO Yang Q; Zhang R; Liu M; Xue P; Liu L Polymers (Basel); 2022 Dec; 15(1):. PubMed ID: 36616538 [TBL] [Abstract][Full Text] [Related]
10. Processing and mechanical properties of HA/UHMWPE nanocomposites. Fang L; Leng Y; Gao P Biomaterials; 2006 Jul; 27(20):3701-7. PubMed ID: 16564570 [TBL] [Abstract][Full Text] [Related]
11. Performance Evaluation of Cellulose Nanofiber with Residual Hemicellulose as a Nanofiller in Polypropylene-Based Nanocomposite. Norrrahim MNF; Ariffin H; Yasim-Anuar TAT; Hassan MA; Ibrahim NA; Yunus WMZW; Nishida H Polymers (Basel); 2021 Mar; 13(7):. PubMed ID: 33800573 [TBL] [Abstract][Full Text] [Related]
12. Study on Preparation of Ultra-High-Molecular-Weight Polyethylene Pipe of Good Thermal-Mechanical Properties Modified with Organo-Montmorillonite by Screw Extrusion. Guo Z; Xu R; Xue P Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32727121 [TBL] [Abstract][Full Text] [Related]
13. Strategy for the Improvement of the Mechanical Properties of Cellulose Nanofiber-Reinforced High-Density Polyethylene Nanocomposites Using Diblock Copolymer Dispersants. Sakakibara K; Moriki Y; Yano H; Tsujii Y ACS Appl Mater Interfaces; 2017 Dec; 9(50):44079-44087. PubMed ID: 29185701 [TBL] [Abstract][Full Text] [Related]
14. Improved Processability and the Processing-Structure-Properties Relationship of Ultra-High Molecular Weight Polyethylene via Supercritical Nitrogen and Carbon Dioxide in Injection Molding. Yilmaz G; Ellingham T; Turng LS Polymers (Basel); 2017 Dec; 10(1):. PubMed ID: 30966070 [TBL] [Abstract][Full Text] [Related]
15. Polyethylene cellulose nanofibrils nanocomposites. Maia THS; Larocca NM; Beatrice CAG; de Menezes AJ; de Freitas Siqueira G; Pessan LA; Dufresne A; França MP; de Almeida Lucas A Carbohydr Polym; 2017 Oct; 173():50-56. PubMed ID: 28732893 [TBL] [Abstract][Full Text] [Related]
16. Mechanical, rheological, and bioactivity properties of ultra high-molecular-weight polyethylene bioactive composites containing polyethylene glycol and hydroxyapatite. Ahmad M; Uzir Wahit M; Abdul Kadir MR; Mohd Dahlan KZ ScientificWorldJournal; 2012; 2012():474851. PubMed ID: 22666129 [TBL] [Abstract][Full Text] [Related]
17. Melt-processing of cellulose nanofibril/polylactide bionanocomposites via a sustainable polyethylene glycol-based carrier system. Cailloux J; Raquez JM; Lo Re G; Santana O; Bonnaud L; Dubois P; Maspoch ML Carbohydr Polym; 2019 Nov; 224():115188. PubMed ID: 31472860 [TBL] [Abstract][Full Text] [Related]
18. Development of thin elastomeric composite membranes for biomedical applications. Teoh SH; Tang ZG; Ramakrishna S J Mater Sci Mater Med; 1999 Jun; 10(6):343-52. PubMed ID: 15348135 [TBL] [Abstract][Full Text] [Related]
19. Effect of Cellulose Nanofiber (CNF) Surface Treatment on Cellular Structures and Mechanical Properties of Polypropylene/CNF Nanocomposite Foams via Core-Back Foam Injection Molding. Wang L; Okada K; Hikima Y; Ohshima M; Sekiguchi T; Yano H Polymers (Basel); 2019 Feb; 11(2):. PubMed ID: 30960233 [TBL] [Abstract][Full Text] [Related]
20. Analysis of the effect of pressure on compression moulding of UHMWPE. Parasnis NC; Ramani K J Mater Sci Mater Med; 1998 Mar; 9(3):165-72. PubMed ID: 15348906 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]