These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. More realistic models of sexually transmitted disease transmission dynamics: sexual partnership networks, pair models, and moment closure. Ferguson NM; Garnett GP Sex Transm Dis; 2000 Nov; 27(10):600-9. PubMed ID: 11099075 [TBL] [Abstract][Full Text] [Related]
3. The core group revisited: the effect of partner mixing and migration on the spread of gonorrhea, Chlamydia, and HIV. Stigum H; Falck W; Magnus P Math Biosci; 1994 Mar; 120(1):1-23. PubMed ID: 8155907 [TBL] [Abstract][Full Text] [Related]
4. Higher variability in the number of sexual partners in males can contribute to a higher prevalence of sexually transmitted diseases in females. Gouveia-Oliveira R; Pedersen AG J Theor Biol; 2009 Nov; 261(1):100-6. PubMed ID: 19627993 [TBL] [Abstract][Full Text] [Related]
5. Toward a unified theory of sexual mixing and pair formation. Blythe SP; Castillo-Chavez C; Palmer JS; Cheng M Math Biosci; 1991 Dec; 107(2):379-405. PubMed ID: 1806124 [TBL] [Abstract][Full Text] [Related]
6. The basic reproduction ratio for sexually transmitted diseases: I. Theoretical considerations. Diekmann O; Dietz K; Heesterbeek JA Math Biosci; 1991 Dec; 107(2):325-39. PubMed ID: 1806121 [TBL] [Abstract][Full Text] [Related]
7. Estimating the effective rate of sex partner change from individuals with sexually transmitted diseases. Nagelkerke NJ; Brunham RC; Moses S; Plummer FA Sex Transm Dis; 1994; 21(4):226-30. PubMed ID: 7974075 [TBL] [Abstract][Full Text] [Related]
8. Sexual networks: implications for the transmission of sexually transmitted infections. Liljeros F; Edling CR; Nunes Amaral LA Microbes Infect; 2003 Feb; 5(2):189-96. PubMed ID: 12650777 [TBL] [Abstract][Full Text] [Related]
9. The basic reproduction ratio R0 for a sexually transmitted disease in a pair formation model with two types of pairs. Kretzschmar M; Jager JC; Reinking DP; Van Zessen G; Brouwers H Math Biosci; 1994 Dec; 124(2):181-205. PubMed ID: 7833594 [TBL] [Abstract][Full Text] [Related]
10. Frequency-dependent incidence in models of sexually transmitted diseases: portrayal of pair-based transmission and effects of illness on contact behaviour. Lloyd-Smith JO; Getz WM; Westerhoff HV Proc Biol Sci; 2004 Mar; 271(1539):625-34. PubMed ID: 15156921 [TBL] [Abstract][Full Text] [Related]
11. Concurrency of partnerships, consistency with data, and control of sexually transmitted infections. Leng T; Keeling MJ Epidemics; 2018 Dec; 25():35-46. PubMed ID: 29798812 [TBL] [Abstract][Full Text] [Related]
12. Modelling the impact of alternative HIV intervention strategies in rural Uganda. Robinson NJ; Mulder DW; Auvert B; Hayes RJ AIDS; 1995 Nov; 9(11):1263-70. PubMed ID: 8561980 [TBL] [Abstract][Full Text] [Related]
13. Population- and individual-based approaches to the design and analysis of epidemiologic studies of sexually transmitted disease transmission. Shiboski S; Padian NS J Infect Dis; 1996 Oct; 174 Suppl 2():S188-200. PubMed ID: 8843249 [TBL] [Abstract][Full Text] [Related]
14. The basic reproduction ratio for sexually transmitted diseases. Part 2. Effects of variable HIV infectivity. Dietz K; Heesterbeek JA; Tudor DW Math Biosci; 1993; 117(1-2):35-47. PubMed ID: 8400583 [TBL] [Abstract][Full Text] [Related]
15. Comparability of results from pair and classical model formulations for different sexually transmitted infections. Ong JB; Fu X; Lee GK; Chen MI PLoS One; 2012; 7(6):e39575. PubMed ID: 22761828 [TBL] [Abstract][Full Text] [Related]
16. On some formulas in a partnership model from the perspective of a semi-Markov process. Mode CJ; Dietz K J Math Biol; 1994; 32(2):161-9. PubMed ID: 8145029 [TBL] [Abstract][Full Text] [Related]
18. Analysis and simulation of a stochastic, discrete-individual model of STD transmission with partnership concurrency. Chick SE; Adams AL; Koopman JS Math Biosci; 2000 Jul; 166(1):45-68. PubMed ID: 10882799 [TBL] [Abstract][Full Text] [Related]
19. Monogamous networks and the spread of sexually transmitted diseases. Eames KT; Keeling MJ Math Biosci; 2004 Jun; 189(2):115-30. PubMed ID: 15094315 [TBL] [Abstract][Full Text] [Related]
20. Number of sexual encounters involving intercourse and the transmission of sexually transmitted infections. Nordvik MK; Liljeros F Sex Transm Dis; 2006 Jun; 33(6):342-9. PubMed ID: 16721329 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]