These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 3351394)

  • 1. On the formation of circulating patterns of excitation in anisotropic excitable media.
    Keener JP
    J Math Biol; 1988; 26(1):41-56. PubMed ID: 3351394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting the entrainment of reentrant cardiac waves using phase resetting curves.
    Glass L; Nagai Y; Hall K; Talajic M; Nattel S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021908. PubMed ID: 11863564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spiral waves in two-dimensional models of ventricular muscle: formation of a stationary core.
    Beaumont J; Davidenko N; Davidenko JM; Jalife J
    Biophys J; 1998 Jul; 75(1):1-14. PubMed ID: 9649363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast propagation regions cause self-sustained reentry in excitable media.
    Zykov V; Krekhov A; Bodenschatz E
    Proc Natl Acad Sci U S A; 2017 Feb; 114(6):1281-1286. PubMed ID: 28123066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias.
    Nash MP; Panfilov AV
    Prog Biophys Mol Biol; 2004; 85(2-3):501-22. PubMed ID: 15142759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Termination of pinned vortices by high-frequency wave trains in heartlike excitable media with anisotropic fiber orientation.
    Hörning M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 1):031912. PubMed ID: 23030949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wave block formation in homogeneous excitable media following premature excitations: dependence on restitution relations.
    Comtois P; Vinet A; Nattel S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031919. PubMed ID: 16241494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spiral wave breakup in excitable media with an inhomogeneity of conduction anisotropy.
    Kuklik P; Szumowski L; Sanders P; Zebrowski JJ
    Comput Biol Med; 2010 Sep; 40(9):775-80. PubMed ID: 20684951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hysteresis and bistability in periodically paced cardiac tissue.
    Huang X; Qian Y; Zhang X; Hu G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051903. PubMed ID: 20866257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correspondence between discrete and continuous models of excitable media: trigger waves.
    Chernyak YB; Feldman AB; Cohen RJ
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1997 Mar; 55(3 Pt B):3215-33. PubMed ID: 11540551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A quasi-one-dimensional theory for anisotropic propagation of excitation in cardiac muscle.
    Wu J; Johnson EA; Kootsey JM
    Biophys J; 1996 Nov; 71(5):2427-39. PubMed ID: 8913583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wave propagation simulation in normal and infarcted myocardium: computational and modelling issues.
    Maglaveras N; Van Capelle FJ; De Bakker JM
    Med Inform (Lond); 1998; 23(2):105-18. PubMed ID: 9667044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On interplay between excitability and geometry.
    Adamatzky A
    Biosystems; 2020 Jan; 187():104034. PubMed ID: 31756587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effective control of excitable waves in 2D cardiac excitable media].
    Li L; Liu L; Zhang G; Wang G; Qu Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Dec; 22(6):1104-7. PubMed ID: 16422076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synchronization-based reconstruction of electromechanical wave dynamics in elastic excitable media.
    Lebert J; Christoph J
    Chaos; 2019 Sep; 29(9):093117. PubMed ID: 31575136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics and cardiac arrhythmias.
    Qu Z; Weiss JN
    J Cardiovasc Electrophysiol; 2006 Sep; 17(9):1042-9. PubMed ID: 16899089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristic and critical excitation length scales in 1-D and 2-D simulations of reentrant cardiac arrhythmias using simple two-variable models.
    Chernyak YB; Starobin JM
    Crit Rev Biomed Eng; 1999; 27(3-5):359-414. PubMed ID: 10864284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonuniform muscle fiber orientation causes spiral wave drift in a finite element model of cardiac action potential propagation.
    Rogers JM; McCulloch AD
    J Cardiovasc Electrophysiol; 1994 Jun; 5(6):496-509. PubMed ID: 8087294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vulnerability in an excitable medium: analytical and numerical studies of initiating unidirectional propagation.
    Starmer CF; Biktashev VN; Romashko DN; Stepanov MR; Makarova ON; Krinsky VI
    Biophys J; 1993 Nov; 65(5):1775-87. PubMed ID: 8298011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of electrically induced reentrant circuits in a sheet of myocardium.
    Larson C; Dragnev L; Trayanova N
    Ann Biomed Eng; 2003; 31(7):768-80. PubMed ID: 12971610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.