These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 33513952)

  • 21. Molecular identification of the phosphate transporter family 1 (PHT1) genes and their expression profiles in response to phosphorus deprivation and other abiotic stresses in Brassica napus.
    Li Y; Wang X; Zhang H; Wang S; Ye X; Shi L; Xu F; Ding G
    PLoS One; 2019; 14(7):e0220374. PubMed ID: 31344115
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrogen sulphide alleviates iron deficiency by promoting iron availability and plant hormone levels in Glycine max seedlings.
    Chen J; Zhang NN; Pan Q; Lin XY; Shangguan Z; Zhang JH; Wei GH
    BMC Plant Biol; 2020 Aug; 20(1):383. PubMed ID: 32819279
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coupling VIGS with Short- and Long-Term Stress Exposure to Understand the Fiskeby III Iron Deficiency Stress Response.
    O'Rourke JA; Graham MA
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36614091
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comprehensive characterization and RNA-Seq profiling of the HD-Zip transcription factor family in soybean (Glycine max) during dehydration and salt stress.
    Belamkar V; Weeks NT; Bharti AK; Farmer AD; Graham MA; Cannon SB
    BMC Genomics; 2014 Nov; 15():950. PubMed ID: 25362847
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcriptomic and metabolomic profiling of melatonin treated soybean (Glycine max L.) under drought stress during grain filling period through regulation of secondary metabolite biosynthesis pathways.
    Cao L; Jin X; Zhang Y; Zhang M; Wang Y
    PLoS One; 2020; 15(10):e0239701. PubMed ID: 33125378
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Up-regulating GmETO1 improves phosphorus uptake and use efficiency by promoting root growth in soybean.
    Zhang H; Yang Y; Sun C; Liu X; Lv L; Hu Z; Yu D; Zhang D
    Plant Cell Environ; 2020 Sep; 43(9):2080-2094. PubMed ID: 32515009
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Daytime soybean transcriptome fluctuations during water deficit stress.
    Rodrigues FA; Fuganti-Pagliarini R; Marcolino-Gomes J; Nakayama TJ; Molinari HB; Lobo FP; Harmon FG; Nepomuceno AL
    BMC Genomics; 2015 Jul; 16(1):505. PubMed ID: 26149272
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genome-wide transcriptome analysis of soybean primary root under varying water-deficit conditions.
    Song L; Prince S; Valliyodan B; Joshi T; Maldonado dos Santos JV; Wang J; Lin L; Wan J; Wang Y; Xu D; Nguyen HT
    BMC Genomics; 2016 Jan; 17():57. PubMed ID: 26769043
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Individual versus Combinatorial Effects of Silicon, Phosphate, and Iron Deficiency on the Growth of Lowland and Upland Rice Varieties.
    Chaiwong N; Prom-U-Thai C; Bouain N; Lacombe B; Rouached H
    Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29562647
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genome-wide analysis of overlapping genes regulated by iron deficiency and phosphate starvation reveals new interactions in Arabidopsis roots.
    Li W; Lan P
    BMC Res Notes; 2015 Oct; 8():555. PubMed ID: 26459023
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A genome-wide expression profile analysis reveals active genes and pathways coping with phosphate starvation in soybean.
    Wang Q; Wang J; Yang Y; Du W; Zhang D; Yu D; Cheng H
    BMC Genomics; 2016 Mar; 17():192. PubMed ID: 26944721
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression Analyses of Soybean VOZ Transcription Factors and the Role of
    Li B; Zheng JC; Wang TT; Min DH; Wei WL; Chen J; Zhou YB; Chen M; Xu ZS; Ma YZ
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32245276
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitative Proteomics Reveals that GmENO2 Proteins Are Involved in Response to Phosphate Starvation in the Leaves of
    Cheng L; Min W; Li M; Zhou L; Hsu CC; Yang X; Jiang X; Ruan Z; Zhong Y; Wang ZY; Wang W
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33477636
    [TBL] [Abstract][Full Text] [Related]  

  • 34. De novo transcriptome analysis of Medicago falcata reveals novel insights about the mechanisms underlying abiotic stress-responsive pathway.
    Miao Z; Xu W; Li D; Hu X; Liu J; Zhang R; Tong Z; Dong J; Su Z; Zhang L; Sun M; Li W; Du Z; Hu S; Wang T
    BMC Genomics; 2015 Oct; 16():818. PubMed ID: 26481731
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcriptional response of soybean to thiamethoxam seed treatment in the presence and absence of drought stress.
    Stamm MD; Enders LS; Donze-Reiner TJ; Baxendale FP; Siegfried BD; Heng-Moss TM
    BMC Genomics; 2014 Dec; 15(1):1055. PubMed ID: 25467808
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression of potential reference genes in response to macronutrient stress in rice and soybean.
    Sharma S; Vengavasi K; Kumar MN; Yadav SK; Pandey R
    Gene; 2021 Aug; 792():145742. PubMed ID: 34051336
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of tris(3-hydroxy-4-pyridinonate) iron(III) complexes on iron uptake and storage in soybean (Glycine max L.).
    Santos CS; Carvalho SM; Leite A; Moniz T; Roriz M; Rangel AO; Rangel M; Vasconcelos MW
    Plant Physiol Biochem; 2016 Sep; 106():91-100. PubMed ID: 27156133
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Soybean proteomics for unraveling abiotic stress response mechanism.
    Hossain Z; Khatoon A; Komatsu S
    J Proteome Res; 2013 Nov; 12(11):4670-84. PubMed ID: 24016329
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wild soybean roots depend on specific transcription factors and oxidation reduction related genesin response to alkaline stress.
    DuanMu H; Wang Y; Bai X; Cheng S; Deyholos MK; Wong GK; Li D; Zhu D; Li R; Yu Y; Cao L; Chen C; Zhu Y
    Funct Integr Genomics; 2015 Nov; 15(6):651-60. PubMed ID: 25874911
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of Fe-deficient conditions on Fe uptake and utilization in P-efficient soybean.
    Qiu W; Dai J; Wang N; Guo X; Zhang X; Zuo Y
    Plant Physiol Biochem; 2017 Mar; 112():1-8. PubMed ID: 28012287
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.