These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 33513958)

  • 21. Erythrocyte-derived microvesicles amplify systemic inflammation by thrombin-dependent activation of complement.
    Zecher D; Cumpelik A; Schifferli JA
    Arterioscler Thromb Vasc Biol; 2014 Feb; 34(2):313-20. PubMed ID: 24311376
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolation/Analysis of Extracellular Microvesicles from HSV-1-Infected Cells.
    Bello-Morales R; López-Guerrero JA
    Methods Mol Biol; 2020; 2060():305-317. PubMed ID: 31617186
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Procoagulant Activity of Red Blood Cell-Derived Microvesicles during Red Cell Storage.
    Hashemi Tayer A; Amirizadeh N; Ahmadinejad M; Nikougoftar M; Deyhim MR; Zolfaghari S
    Transfus Med Hemother; 2019 Aug; 46(4):224-230. PubMed ID: 31700504
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isolation and Characterization of Microvesicles from Peripheral Blood.
    Menck K; Bleckmann A; Schulz M; Ries L; Binder C
    J Vis Exp; 2017 Jan; (119):. PubMed ID: 28117819
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of Irradiation on Microparticles in Red Blood Cell Concentrates.
    Cho CH; Yun SG; Koh YE; Lim CS
    Ann Lab Med; 2016 Jul; 36(4):362-6. PubMed ID: 27139610
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phospholipidomics reveals differences in glycerophosphoserine profiles of hypothermically stored red blood cells and microvesicles.
    Bicalho B; Holovati JL; Acker JP
    Biochim Biophys Acta; 2013 Feb; 1828(2):317-26. PubMed ID: 23123566
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Circulating membrane-derived microvesicles in redox biology.
    Larson MC; Hillery CA; Hogg N
    Free Radic Biol Med; 2014 Aug; 73():214-28. PubMed ID: 24751526
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pre-analytical and methodological challenges in red blood cell microparticle proteomics.
    Rubin O; Crettaz D; Tissot JD; Lion N
    Talanta; 2010 Jun; 82(1):1-8. PubMed ID: 20685428
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impact of collection, isolation and storage methodology of circulating microvesicles on flow cytometric analysis.
    Kong F; Zhang L; Wang H; Yuan G; Guo A; Li Q; Chen Z
    Exp Ther Med; 2015 Dec; 10(6):2093-2101. PubMed ID: 26668601
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selective loss of microvesicles is a major issue of the differential centrifugation isolation protocols.
    Nigro A; Finardi A; Ferraro MM; Manno DE; Quattrini A; Furlan R; Romano A
    Sci Rep; 2021 Feb; 11(1):3589. PubMed ID: 33574479
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Temporal sequence of the human RBCs' vesiculation observed in nano-scale with application of AFM and complementary techniques.
    Kaczmarska M; Grosicki M; Bulat K; Mardyla M; Szczesny-Malysiak E; Blat A; Dybas J; Sacha T; Marzec KM
    Nanomedicine; 2020 Aug; 28():102221. PubMed ID: 32438105
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flow cytometric quantitation of red blood cell vesicles in thalassemia.
    Pattanapanyasat K; Noulsri E; Fucharoen S; Lerdwana S; Lamchiagdhase P; Siritanaratkul N; Webster HK
    Cytometry B Clin Cytom; 2004 Jan; 57(1):23-31. PubMed ID: 14696060
    [TBL] [Abstract][Full Text] [Related]  

  • 33. AS-7 improved in vitro quality of red blood cells prepared from whole blood held overnight at room temperature.
    Veale MF; Healey G; Sran A; Payne KA; Zia M; Sparrow RL
    Transfusion; 2015 Jan; 55(1):108-14. PubMed ID: 25039791
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Shiga toxin-induced complement-mediated hemolysis and release of complement-coated red blood cell-derived microvesicles in hemolytic uremic syndrome.
    Arvidsson I; Ståhl AL; Hedström MM; Kristoffersson AC; Rylander C; Westman JS; Storry JR; Olsson ML; Karpman D
    J Immunol; 2015 Mar; 194(5):2309-18. PubMed ID: 25637016
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cholesterol-loading of membranes of normal erythrocytes inhibits phospholipid repair and arachidonoyl-CoA:1-palmitoyl-sn-glycero-3-phosphocholine acyl transferase. A model of spur cell anemia.
    Allen DW; Manning N
    Blood; 1996 Apr; 87(8):3489-93. PubMed ID: 8605368
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis and clinical relevance of microparticles from red blood cells.
    Tissot JD; Rubin O; Canellini G
    Curr Opin Hematol; 2010 Nov; 17(6):571-7. PubMed ID: 20960973
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Elevated levels of thrombin-generating microparticles in stored red blood cells.
    Gao Y; Lv L; Liu S; Ma G; Su Y
    Vox Sang; 2013 Jul; 105(1):11-7. PubMed ID: 23347295
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An overview of the role of microparticles/microvesicles in blood components: Are they clinically beneficial or harmful?
    Burnouf T; Chou ML; Goubran H; Cognasse F; Garraud O; Seghatchian J
    Transfus Apher Sci; 2015 Oct; 53(2):137-45. PubMed ID: 26596959
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro quality of red blood cells (RBCs) collected by multicomponent apheresis compared to manually collected RBCs during 49 days of storage.
    Picker SM; Radojska SM; Gathof BS
    Transfusion; 2007 Apr; 47(4):687-96. PubMed ID: 17381628
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effects of red blood cell preparation method on in vitro markers of red blood cell aging and inflammatory response.
    Radwanski K; Garraud O; Cognasse F; Hamzeh-Cognasse H; Payrat JM; Min K
    Transfusion; 2013 Dec; 53(12):3128-38. PubMed ID: 23461802
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.