BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 33513974)

  • 21. The effect of dye-sensitized solar cell based on the composite layer by anodic TiO2 nanotubes.
    Yang JH; Kim KH; Bark CW; Choi HW
    Nanoscale Res Lett; 2014; 9(1):671. PubMed ID: 25593557
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of Gold Nanoparticle Distribution in TiO
    Mayumi S; Ikeguchi Y; Nakane D; Ishikawa Y; Uraoka Y; Ikeguchi M
    Nanoscale Res Lett; 2017 Aug; 12(1):513. PubMed ID: 28853056
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Scattering and plasmonic synergetic enhancement of the performance of dye-sensitized solar cells by double-shell SiO
    Li M; Li M; Zhu Y; Tang Y; Bai L; Lei W; Wang Z; Zhao X
    Nanotechnology; 2017 Jun; 28(26):265202. PubMed ID: 28510532
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synergic effect of graphene and core-shells structured Au NR@SiO
    Bai L; Wen J; Tang Y; Wu H; Zhang H; Wang X; He W; Sun R
    Nanotechnology; 2019 Nov; 30(46):465401. PubMed ID: 31479422
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Large-diameter titanium dioxide nanotube arrays as a scattering layer for high-efficiency dye-sensitized solar cell.
    Liu X; Guo M; Cao J; Lin J; Tsang YH; Chen X; Huang H
    Nanoscale Res Lett; 2014; 9(1):362. PubMed ID: 25114652
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanosilver-decorated TiO2 nanofibers coated with a SiO2 layer for enhanced light scattering and localized surface plasmons in dye-sensitized solar cells.
    Hwang SH; Roh J; Jang J
    Chemistry; 2013 Sep; 19(39):13120-6. PubMed ID: 23934778
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design of multi-porous layer for dye-sensitized solar cells by doping with TiO2 nanoparticles.
    Hsieh TL; Chu AK; Huang WY
    J Nanosci Nanotechnol; 2013 Jan; 13(1):365-9. PubMed ID: 23646739
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High Performance Dye-Sensitized Solar Cells with Enhanced Light-Harvesting Efficiency Based on Polyvinylpyrrolidone-Coated Au-TiO2 Microspheres.
    Ding Y; Sheng J; Yang Z; Jiang L; Mo L; Hu L; Que Y; Dai S
    ChemSusChem; 2016 Apr; 9(7):720-7. PubMed ID: 26915757
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hierarchical structured TiO2 photoanodes for dye-sensitized solar cells.
    Shih YC; Chu AK; Huang WY
    J Nanosci Nanotechnol; 2012 Apr; 12(4):3070-6. PubMed ID: 22849067
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Layer-by-layer self-assembly of TiO2 hierarchical nanosheets with exposed {001} facets as an effective bifunctional layer for dye-sensitized solar cells.
    Sun W; Peng T; Liu Y; Yu W; Zhang K; Mehnane HF; Bu C; Guo S; Zhao XZ
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9144-9. PubMed ID: 24881671
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Controllable synthesis of concave cubic gold core-shell nanoparticles for plasmon-enhanced photon harvesting.
    Bai Y; Butburee T; Yu H; Li Z; Amal R; Lu GQ; Wang L
    J Colloid Interface Sci; 2015 Jul; 449():246-51. PubMed ID: 25498878
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rational design of a tripartite-layered TiO
    Khan J; Gu J; He S; Li X; Ahmed G; Liu Z; Akhtar MN; Mai W; Wu M
    Nanoscale; 2017 Jul; 9(28):9913-9920. PubMed ID: 28678289
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Broadband Plasmonic Enhancement of High-Efficiency Dye-Sensitized Solar Cells by Incorporating Au@Ag@SiO
    Bao Z; Fu N; Qin Y; Lv J; Wang Y; He J; Hou Y; Jiao C; Chen D; Wu Y; Dai J
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):538-545. PubMed ID: 31842539
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced photovoltaic properties and long-term stability in plasmonic dye-sensitized solar cells via noncorrosive redox mediator.
    Jung H; Koo B; Kim JY; Kim T; Son HJ; Kim B; Kim JY; Lee DK; Kim H; Cho J; Ko MJ
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19191-200. PubMed ID: 25296336
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of incorporation of TiO2 nanoparticles into oriented TiO2 nanotube based dye-sensitized solar cells.
    Shin K; Jun Y; Han GY; Park JH
    J Nanosci Nanotechnol; 2009 Dec; 9(12):7436-9. PubMed ID: 19908804
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synergistic effect between anatase and rutile TiO2 nanoparticles in dye-sensitized solar cells.
    Li G; Richter CP; Milot RL; Cai L; Schmuttenmaer CA; Crabtree RH; Brudvig GW; Batista VS
    Dalton Trans; 2009 Dec; (45):10078-85. PubMed ID: 19904436
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Golden Fig: A Plasmonic Effect Study of Organic-Based Solar Cells.
    Barichello J; Mariani P; Matteocci F; Vesce L; Reale A; Di Carlo A; Lanza M; Di Marco G; Polizzi S; Calogero G
    Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055282
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mesoporous inverse opal TiO2 film as light scattering layer for dye-sensitized solar cell.
    Jin M; Kim SS; Yoon M; Li Z; Lee YY; Kim JM
    J Nanosci Nanotechnol; 2012 Jan; 12(1):815-21. PubMed ID: 22524063
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced dye-sensitized solar cells performance using anatase TiO2 mesocrystals with the Wulff construction of nearly 100% exposed {101} facets as effective light scattering layer.
    Zhou Y; Wang X; Wang H; Song Y; Fang L; Ye N; Wang L
    Dalton Trans; 2014 Mar; 43(12):4711-9. PubMed ID: 24468963
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Locally placed nanoscale gold islands film within a TiO
    Kim T; Kumaresan Y; Cho SJ; Lee CL; Lee H; Jung GY
    Nano Converg; 2016; 3(1):33. PubMed ID: 28191443
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.