These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33514034)

  • 1. Entropy Generation for Negative Frictional Pressure Drop in Vertical Slug and Churn Flows.
    Liu L; Liu D; Huang N
    Entropy (Basel); 2021 Jan; 23(2):. PubMed ID: 33514034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Differential Pressure Sensor Coupled with Conductance Sensors to Evaluate Pressure Drop Prediction Models of Gas-Water Two-Phase Flow in a Vertical Small Pipe.
    Deng YR; Jin ND; Yang QY; Wang DY
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31213018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of Water Velocity in Gas-Water Two-Phase Flow with the Combination of Electromagnetic Flowmeter and Conductance Sensor.
    Yang QY; Jin ND; Zhai LS; Ren YY; Yu C; Wei JD
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32486465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gas-liquid-liquid three-phase flow pattern and pressure drop in a microfluidic chip: similarities with gas-liquid/liquid-liquid flows.
    Yue J; Rebrov EV; Schouten JC
    Lab Chip; 2014 May; 14(9):1632-49. PubMed ID: 24651271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and Simulation Studies on the Slug Flow in Curve Pipes.
    Shi S; Han G; Zhong Z; Li Z
    ACS Omega; 2021 Aug; 6(30):19458-19470. PubMed ID: 34368533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pressure drop of slug flow in microchannels with increasing void fraction: experiment and modeling.
    Molla S; Eskin D; Mostowfi F
    Lab Chip; 2011 Jun; 11(11):1968-78. PubMed ID: 21512682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Void Fraction Measurement of Oil-Gas-Water Three-Phase Flow Using Mutually Perpendicular Ultrasonic Sensor.
    Ren W; Zhao A; Jin N
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31952159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical Study of Fin-and-Tube Heat Exchanger in Low-Pressure Environment: Air-Side Heat Transfer and Frictional Performance, Entropy Generation Analysis, and Model Development.
    Zhang L; Wang J; Liu R; Li G; Han X; Zhang Z; Zhao J; Dai B
    Entropy (Basel); 2022 Jun; 24(7):. PubMed ID: 35885110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical Slug Flow Model of Curved Pipes with Experimental Validation.
    Shi S; Wu X; Han G; Zhong Z; Li Z; Sun K
    ACS Omega; 2019 Sep; 4(12):14831-14840. PubMed ID: 31552322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CFD and Optimization Study of Frictional Pressure Drop Through Bends.
    Debnath S; Banik A; Bandyopadhyay TK; Saha AK
    Recent Pat Biotechnol; 2019; 13(1):74-86. PubMed ID: 30124162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Entropy Generation Analysis and Thermodynamic Optimization of Jet Impingement Cooling Using Large Eddy Simulation.
    Ries F; Li Y; Nishad K; Janicka J; Sadiki A
    Entropy (Basel); 2019 Jan; 21(2):. PubMed ID: 33266845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical Analysis of Transient Pressure Damping in Viscoelastic Pipes at Different Water Temperatures.
    Sun Q; Zhang Z; Wu Y; Xu Y; Liang H
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Entropy generation in the human lung due to effect of psychrometric condition and friction in the respiratory tract.
    Dutta A; Chattopadhyay H; Yasmin H; Rahimi-Gorji M
    Comput Methods Programs Biomed; 2019 Oct; 180():105010. PubMed ID: 31421607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dataset of flow experiment: Effects of density, viscosity and surface tension on flow regimes and pressure drop of two-phase flow in horizontal pipes.
    Al-Dogail AS; Gajbhiye RN
    Data Brief; 2021 Oct; 38():107396. PubMed ID: 34621927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental study on the flow regimes and pressure gradients of air-oil-water three-phase flow in horizontal pipes.
    Al-Hadhrami LM; Shaahid SM; Tunde LO; Al-Sarkhi A
    ScientificWorldJournal; 2014; 2014():810527. PubMed ID: 24523645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-phase slug flow in microchips can provide beneficial reaction conditions for enzyme liquid-liquid reactions.
    Cech J; Přibyl M; Snita D
    Biomicrofluidics; 2013; 7(5):54103. PubMed ID: 24404066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat transfer intensification of nanomaterial with involve of swirl flow device concerning entropy generation.
    Shah Z; Jafaryar M; Sheikholeslami M; Ikramullah ; Kumam P
    Sci Rep; 2021 Jun; 11(1):12504. PubMed ID: 34127716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluid Flow and Entropy Generation Analysis of Al
    Ma H; Duan Z; Su L; Ning X; Bai J; Lv X
    Entropy (Basel); 2019 Jul; 21(8):. PubMed ID: 33267453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow rate limitation in open capillary channel flows.
    Haake D; Rosendahl U; Ohlhoff A; Dreyer ME
    Ann N Y Acad Sci; 2006 Sep; 1077():443-58. PubMed ID: 17124140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Favourably regulating two-phase flow regime of flow boiling HFE-7100 in microchannels using silicon nanowires.
    Alam T; Li W; Chang W; Yang F; Khan J; Li C
    Sci Rep; 2021 May; 11(1):11131. PubMed ID: 34045466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.