BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 33514102)

  • 1. Ring polymer quantization of the photon field in polariton chemistry.
    Chowdhury SN; Mandal A; Huo P
    J Chem Phys; 2021 Jan; 154(4):044109. PubMed ID: 33514102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cavity Quantum Electrodynamics Complete Active Space Configuration Interaction Theory.
    Vu N; Mejia-Rodriguez D; Bauman NP; Panyala A; Mutlu E; Govind N; Foley JJ
    J Chem Theory Comput; 2024 Feb; 20(3):1214-1227. PubMed ID: 38291561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polariton-Mediated Electron Transfer via Cavity Quantum Electrodynamics.
    Mandal A; Krauss TD; Huo P
    J Phys Chem B; 2020 Jul; 124(29):6321-6340. PubMed ID: 32589846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ab Initio Molecular Cavity Quantum Electrodynamics Simulations Using Machine Learning Models.
    Hu D; Huo P
    J Chem Theory Comput; 2023 Apr; 19(8):2353-2368. PubMed ID: 37000936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polariton relaxation under vibrational strong coupling: Comparing cavity molecular dynamics simulations against Fermi's golden rule rate.
    Li TE; Nitzan A; Subotnik JE
    J Chem Phys; 2022 Apr; 156(13):134106. PubMed ID: 35395873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear gradient expressions for molecular cavity quantum electrodynamics simulations using mixed quantum-classical methods.
    Zhou W; Hu D; Mandal A; Huo P
    J Chem Phys; 2022 Sep; 157(10):104118. PubMed ID: 36109223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating New Reactivities Enabled by Polariton Photochemistry.
    Mandal A; Huo P
    J Phys Chem Lett; 2019 Sep; 10(18):5519-5529. PubMed ID: 31475529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quasi-diabatic propagation scheme for simulating polariton chemistry.
    Hu D; Mandal A; Weight BM; Huo P
    J Chem Phys; 2022 Nov; 157(19):194109. PubMed ID: 36414442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Accurate Linearized Semiclassical Approach for Calculating Cavity-Modified Charge Transfer Rate Constants.
    Saller MAC; Lai Y; Geva E
    J Phys Chem Lett; 2022 Mar; 13(10):2330-2337. PubMed ID: 35245071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fermi's Golden Rule for Spontaneous Emission in Absorptive and Amplifying Media.
    Franke S; Ren J; Richter M; Knorr A; Hughes S
    Phys Rev Lett; 2021 Jul; 127(1):013602. PubMed ID: 34270314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polariton induced conical intersection and berry phase.
    Farag MH; Mandal A; Huo P
    Phys Chem Chem Phys; 2021 Aug; 23(31):16868-16879. PubMed ID: 34328152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Singlet fission of amorphous rubrene modulated by polariton formation.
    Takahashi S; Watanabe K; Matsumoto Y
    J Chem Phys; 2019 Aug; 151(7):074703. PubMed ID: 31438713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All-optical control of three-photon spectra and time asymmetry in a strongly coupled cavity polariton system.
    Zhang X; Li R; Wu H
    Sci Rep; 2016 Mar; 6():22560. PubMed ID: 26936334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative study of different methods for calculating electronic transition rates.
    Kananenka AA; Sun X; Schubert A; Dunietz BD; Geva E
    J Chem Phys; 2018 Mar; 148(10):102304. PubMed ID: 29544297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. State dependent ring polymer molecular dynamics for investigating excited nonadiabatic dynamics.
    Chowdhury SN; Huo P
    J Chem Phys; 2019 Jun; 150(24):244102. PubMed ID: 31255077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Instanton theory for Fermi's golden rule and beyond.
    Ansari IM; Heller ER; Trenins G; Richardson JO
    Philos Trans A Math Phys Eng Sci; 2022 May; 380(2223):20200378. PubMed ID: 35341312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mean field ring polymer molecular dynamics for electronically nonadiabatic reaction rates.
    Duke JR; Ananth N
    Faraday Discuss; 2016 Dec; 195():253-268. PubMed ID: 27739549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculation of electron transfer rates using mixed quantum classical approaches: nonadiabatic limit and beyond.
    Xie W; Bai S; Zhu L; Shi Q
    J Phys Chem A; 2013 Jul; 117(29):6196-204. PubMed ID: 23534444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resonance Enhancement of Vibrational Polariton Chemistry Obtained from the Mixed Quantum-Classical Dynamics Simulations.
    Hu D; Ying W; Huo P
    J Phys Chem Lett; 2023 Dec; 14(49):11208-11216. PubMed ID: 38055902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards polariton blockade of confined exciton-polaritons.
    Delteil A; Fink T; Schade A; Höfling S; Schneider C; İmamoğlu A
    Nat Mater; 2019 Mar; 18(3):219-222. PubMed ID: 30783230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.