These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33514117)

  • 1. Viscoelasticity of biomolecular condensates conforms to the Jeffreys model.
    Zhou HX
    J Chem Phys; 2021 Jan; 154(4):041103. PubMed ID: 33514117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Salt-Dependent Rheology and Surface Tension of Protein Condensates Using Optical Traps.
    Jawerth LM; Ijavi M; Ruer M; Saha S; Jahnel M; Hyman AA; Jülicher F; Fischer-Friedrich E
    Phys Rev Lett; 2018 Dec; 121(25):258101. PubMed ID: 30608810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shape recovery of deformed biomolecular droplets: Dependence on condensate viscoelasticity.
    Zhou HX
    J Chem Phys; 2021 Oct; 155(14):145102. PubMed ID: 34654286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular Regulation of the Material Properties of Biomolecular Condensates.
    Kota D; Zhou HX
    J Phys Chem Lett; 2022 Jun; ():5285-5290. PubMed ID: 35674796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational Freedom and Topological Confinement of Proteins in Biomolecular Condensates.
    Scholl D; Deniz AA
    J Mol Biol; 2022 Jan; 434(1):167348. PubMed ID: 34767801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determining Thermodynamic and Material Properties of Biomolecular Condensates by Confocal Microscopy and Optical Tweezers.
    Ghosh A; Kota D; Zhou HX
    Methods Mol Biol; 2023; 2563():237-260. PubMed ID: 36227477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shear relaxation governs fusion dynamics of biomolecular condensates.
    Ghosh A; Kota D; Zhou HX
    Nat Commun; 2021 Oct; 12(1):5995. PubMed ID: 34645832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macromolecular regulators have matching effects on the phase equilibrium and interfacial tension of biomolecular condensates.
    Mazarakos K; Zhou HX
    Protein Sci; 2021 Jul; 30(7):1360-1370. PubMed ID: 33864415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-Dependent Material Properties of Aging Biomolecular Condensates from Different Viscoelasticity Measurements in Molecular Dynamics Simulations.
    Tejedor AR; Collepardo-Guevara R; Ramírez J; Espinosa JR
    J Phys Chem B; 2023 May; 127(20):4441-4459. PubMed ID: 37194953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of biomolecular condensates by interfacial protein clusters.
    Folkmann AW; Putnam A; Lee CF; Seydoux G
    Science; 2021 Sep; 373(6560):1218-1224. PubMed ID: 34516789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methods for characterizing the material properties of biomolecular condensates.
    Alshareedah I; Kaur T; Banerjee PR
    Methods Enzymol; 2021; 646():143-183. PubMed ID: 33453924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporation and Assembly of a Light-Emitting Enzymatic Reaction into Model Protein Condensates.
    Guan M; Garabedian MV; Leutenegger M; Schuster BS; Good MC; Hammer DA
    Biochemistry; 2021 Oct; 60(42):3137-3151. PubMed ID: 34648259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuage condensates: accelerators or circuit breakers for sRNA silencing pathways?
    Ouyang JPT; Seydoux G
    RNA; 2022 Jan; 28(1):58-66. PubMed ID: 34772788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methods and Strategies to Quantify Phase Separation of Disordered Proteins.
    Ceballos AV; McDonald CJ; Elbaum-Garfinkle S
    Methods Enzymol; 2018; 611():31-50. PubMed ID: 30471691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein structural transitions critically transform the network connectivity and viscoelasticity of RNA-binding protein condensates but RNA can prevent it.
    Tejedor AR; Sanchez-Burgos I; Estevez-Espinosa M; Garaizar A; Collepardo-Guevara R; Ramirez J; Espinosa JR
    Nat Commun; 2022 Sep; 13(1):5717. PubMed ID: 36175408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determinants of viscoelasticity and flow activation energy in biomolecular condensates.
    Alshareedah I; Singh A; Yang S; Ramachandran V; Quinn A; Potoyan DA; Banerjee PR
    Sci Adv; 2024 Feb; 10(7):eadi6539. PubMed ID: 38363841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What are the distinguishing features and size requirements of biomolecular condensates and their implications for RNA-containing condensates?
    Forman-Kay JD; Ditlev JA; Nosella ML; Lee HO
    RNA; 2022 Jan; 28(1):36-47. PubMed ID: 34772786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using quantitative reconstitution to investigate multicomponent condensates.
    Currie SL; Rosen MK
    RNA; 2022 Jan; 28(1):27-35. PubMed ID: 34772789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size and viscoelasticity of spatially confined multilamellar vesicles.
    Fujii S; Richtering W
    Eur Phys J E Soft Matter; 2006 Feb; 19(2):139-48. PubMed ID: 16446982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface tension and viscosity of protein condensates quantified by micropipette aspiration.
    Wang H; Kelley FM; Milovanovic D; Schuster BS; Shi Z
    Biophys Rep (N Y); 2021 Sep; 1(1):. PubMed ID: 36247368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.