These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 33514117)

  • 21. Surface tension and viscosity of protein condensates quantified by micropipette aspiration.
    Wang H; Kelley FM; Milovanovic D; Schuster BS; Shi Z
    Biophys Rep (N Y); 2021 Sep; 1(1):. PubMed ID: 36247368
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 'RNA modulation of transport properties and stability in phase-separated condensates.
    Tejedor AR; Garaizar A; Ramírez J; Espinosa JR
    Biophys J; 2021 Dec; 120(23):5169-5186. PubMed ID: 34762868
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sequence-encoded and composition-dependent protein-RNA interactions control multiphasic condensate morphologies.
    Kaur T; Raju M; Alshareedah I; Davis RB; Potoyan DA; Banerjee PR
    Nat Commun; 2021 Feb; 12(1):872. PubMed ID: 33558506
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Active microrheology of protein condensates using colloidal probe-AFM.
    Li X; van der Gucht J; Erni P; de Vries R
    J Colloid Interface Sci; 2023 Feb; 632(Pt B):357-366. PubMed ID: 36436394
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RNA contributions to the form and function of biomolecular condensates.
    Roden C; Gladfelter AS
    Nat Rev Mol Cell Biol; 2021 Mar; 22(3):183-195. PubMed ID: 32632317
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of different salts on rheological and functional properties of basil (Ocimum bacilicum L.) seed gum.
    Farahmandfar R; Naji-Tabasi S
    Int J Biol Macromol; 2020 Apr; 149():101-107. PubMed ID: 31987951
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantifying viscosity and surface tension of multicomponent protein-nucleic acid condensates.
    Alshareedah I; Thurston GM; Banerjee PR
    Biophys J; 2021 Apr; 120(7):1161-1169. PubMed ID: 33453268
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Backbone and sidechain methyl Ile (δ1), Leu and Val chemical shift assignments of RDE-4 (1-243), an RNA interference initiation protein in C. elegans.
    Chiliveri SC; Kumar S; Marelli UK; Deshmukh MV
    Biomol NMR Assign; 2012 Oct; 6(2):143-6. PubMed ID: 22002349
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Defining basic rules for hardening influenza A virus liquid condensates.
    Etibor TA; Vale-Costa S; Sridharan S; Brás D; Becher I; Mello VH; Ferreira F; Alenquer M; Savitski MM; Amorim MJ
    Elife; 2023 Apr; 12():. PubMed ID: 37013374
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Caenorhabditis elegans NONO-1: Insights into DBHS protein structure, architecture, and function.
    Knott GJ; Lee M; Passon DM; Fox AH; Bond CS
    Protein Sci; 2015 Dec; 24(12):2033-43. PubMed ID: 26435036
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein chemical shift assignments of the unbound and RNA-bound forms of the alternative splicing factor SUP-12 from C. elegans.
    Amrane S; Mackereth CD
    Biomol NMR Assign; 2014 Apr; 8(1):109-12. PubMed ID: 23334698
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aging can transform single-component protein condensates into multiphase architectures.
    Garaizar A; Espinosa JR; Joseph JA; Krainer G; Shen Y; Knowles TPJ; Collepardo-Guevara R
    Proc Natl Acad Sci U S A; 2022 Jun; 119(26):e2119800119. PubMed ID: 35727989
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A working model for condensate RNA-binding proteins as matchmakers for protein complex assembly.
    Chen X; Mayr C
    RNA; 2022 Jan; 28(1):76-87. PubMed ID: 34706978
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protein-based condensation mechanisms drive the assembly of RNA-rich P granules.
    Schmidt H; Putnam A; Rasoloson D; Seydoux G
    Elife; 2021 Jun; 10():. PubMed ID: 34106046
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vivo reconstitution finds multivalent RNA-RNA interactions as drivers of mesh-like condensates.
    Ma W; Zhen G; Xie W; Mayr C
    Elife; 2021 Mar; 10():. PubMed ID: 33650968
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ATP-induced crosslinking of a biomolecular condensate.
    Coupe S; Fakhri N
    bioRxiv; 2023 Apr; ():. PubMed ID: 37131735
    [TBL] [Abstract][Full Text] [Related]  

  • 37. RBFOX and SUP-12 sandwich a G base to cooperatively regulate tissue-specific splicing.
    Kuwasako K; Takahashi M; Unzai S; Tsuda K; Yoshikawa S; He F; Kobayashi N; Güntert P; Shirouzu M; Ito T; Tanaka A; Yokoyama S; Hagiwara M; Kuroyanagi H; Muto Y
    Nat Struct Mol Biol; 2014 Sep; 21(9):778-86. PubMed ID: 25132178
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantifying Dynamics in Phase-Separated Condensates Using Fluorescence Recovery after Photobleaching.
    Taylor NO; Wei MT; Stone HA; Brangwynne CP
    Biophys J; 2019 Oct; 117(7):1285-1300. PubMed ID: 31540706
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular biology. RNA interference in the nucleus.
    Meister G
    Science; 2008 Jul; 321(5888):496-7. PubMed ID: 18653868
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.