These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 33514117)

  • 41. Flow birefringence, stress optical rule and rheology of four micellar solutions with the same low shear viscosity.
    Decruppe JP; Ponton A
    Eur Phys J E Soft Matter; 2003 Mar; 10(3):201-7. PubMed ID: 15015102
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The P Granules of C. elegans: A Genetic Model for the Study of RNA-Protein Condensates.
    Seydoux G
    J Mol Biol; 2018 Nov; 430(23):4702-4710. PubMed ID: 30096346
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics.
    Elbaum-Garfinkle S; Kim Y; Szczepaniak K; Chen CC; Eckmann CR; Myong S; Brangwynne CP
    Proc Natl Acad Sci U S A; 2015 Jun; 112(23):7189-94. PubMed ID: 26015579
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Proximity to criticality predicts surface properties of biomolecular condensates.
    Pyo AGT; Zhang Y; Wingreen NS
    Proc Natl Acad Sci U S A; 2023 Jun; 120(23):e2220014120. PubMed ID: 37252985
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Four KH domains of the C. elegans Bicaudal-C ortholog GLD-3 form a globular structural platform.
    Nakel K; Hartung SA; Bonneau F; Eckmann CR; Conti E
    RNA; 2010 Nov; 16(11):2058-67. PubMed ID: 20823118
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Endocytic proteins with prion-like domains form viscoelastic condensates that enable membrane remodeling.
    Bergeron-Sandoval LP; Kumar S; Heris HK; Chang CLA; Cornell CE; Keller SL; François P; Hendricks AG; Ehrlicher AJ; Pappu RV; Michnick SW
    Proc Natl Acad Sci U S A; 2021 Dec; 118(50):. PubMed ID: 34887356
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Determining the Physico-Chemical Composition of Biomolecular Condensates from Spatially-Resolved NMR.
    Pantoja CF; Ibáñez de Opakua A; Cima-Omori MS; Zweckstetter M
    Angew Chem Int Ed Engl; 2023 Apr; 62(17):e202218078. PubMed ID: 36847235
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biomolecular condensates undergo a generic shear-mediated liquid-to-solid transition.
    Shen Y; Ruggeri FS; Vigolo D; Kamada A; Qamar S; Levin A; Iserman C; Alberti S; George-Hyslop PS; Knowles TPJ
    Nat Nanotechnol; 2020 Oct; 15(10):841-847. PubMed ID: 32661370
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A crystal structure of a collaborative RNA regulatory complex reveals mechanisms to refine target specificity.
    Qiu C; Bhat VD; Rajeev S; Zhang C; Lasley AE; Wine RN; Campbell ZT; Hall TMT
    Elife; 2019 Aug; 8():. PubMed ID: 31397673
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rheological characterization of human brain tissue.
    Budday S; Sommer G; Haybaeck J; Steinmann P; Holzapfel GA; Kuhl E
    Acta Biomater; 2017 Sep; 60():315-329. PubMed ID: 28658600
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Stoichiometry Controls the Dynamics of Liquid Condensates of Associative Proteins.
    Ronceray P; Zhang Y; Liu X; Wingreen NS
    Phys Rev Lett; 2022 Jan; 128(3):038102. PubMed ID: 35119898
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Material properties of phase-separated TFEB condensates regulate the autophagy-lysosome pathway.
    Wang Z; Chen D; Guan D; Liang X; Xue J; Zhao H; Song G; Lou J; He Y; Zhang H
    J Cell Biol; 2022 May; 221(5):. PubMed ID: 35293953
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Surfactants or scaffolds? RNAs of varying lengths control the thermodynamic stability of condensates differently.
    Sanchez-Burgos I; Herriott L; Collepardo-Guevara R; Espinosa JR
    Biophys J; 2023 Jul; 122(14):2973-2987. PubMed ID: 36883003
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Solution structure of CEH-37 homeodomain of the nematode Caenorhabditis elegans.
    Moon S; Lee YW; Kim WT; Lee W
    Biochem Biophys Res Commun; 2014 Jan; 443(2):370-5. PubMed ID: 24361878
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Extreme dynamics in a biomolecular condensate.
    Galvanetto N; Ivanović MT; Chowdhury A; Sottini A; Nüesch MF; Nettels D; Best RB; Schuler B
    Nature; 2023 Jul; 619(7971):876-883. PubMed ID: 37468629
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In Vivo Analysis of a Biomolecular Condensate in the Nervous System of C. elegans.
    Andrusiak MG; Jin Y
    Methods Mol Biol; 2023; 2551():575-593. PubMed ID: 36310226
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mass Balance Imaging: A Phase Portrait Analysis for Characterizing Growth Kinetics of Biomolecular Condensates.
    Geisler J; Yan VT; Grill S; Narayanan A
    Methods Mol Biol; 2023; 2563():413-424. PubMed ID: 36227486
    [TBL] [Abstract][Full Text] [Related]  

  • 58. ZSP-1 is a Z granule surface protein required for Z granule fluidity and germline immortality in Caenorhabditis elegans.
    Wan G; Bajaj L; Fields B; Dodson AE; Pagano D; Fei Y; Kennedy S
    EMBO J; 2021 Feb; 40(3):e105612. PubMed ID: 33438773
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Self-Assembly of Biomolecular Condensates with Shared Components.
    Jacobs WM
    Phys Rev Lett; 2021 Jun; 126(25):258101. PubMed ID: 34241502
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Liquid state theory study of the phase behavior and macromolecular scale structure of model biomolecular condensates.
    Shi G; Schweizer KS
    J Chem Phys; 2023 Jul; 159(4):. PubMed ID: 37489654
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.