These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 33514228)

  • 1. Four-probe sensing of temperature during Joule heating of silicon.
    Pedersen AK; Madhi D; Mirosnikov D; Jepsen PU; Petersen DH
    Rev Sci Instrum; 2021 Jan; 92(1):014903. PubMed ID: 33514228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature measurement of Joule heated silicon micro/nanowires using selectively decorated quantum dots.
    Yun J; Ahn JH; Lee BJ; Moon DI; Choi YK; Park I
    Nanotechnology; 2016 Dec; 27(50):505705. PubMed ID: 27869647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modified data analysis for thermal conductivity measurements of polycrystalline silicon microbridges using a steady state Joule heating technique.
    Sayer RA; Piekos ES; Phinney LM
    Rev Sci Instrum; 2012 Dec; 83(12):124904. PubMed ID: 23278015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Joule-Heated and Suspended Silicon Nanowire Based Sensor for Low-Power and Stable Hydrogen Detection.
    Yun J; Ahn JH; Moon DI; Choi YK; Park I
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42349-42357. PubMed ID: 31617994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An analytical model of joule heating in piezoresistive microcantilevers.
    Ansari MZ; Cho C
    Sensors (Basel); 2010; 10(11):9668-86. PubMed ID: 22163433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A setup to measure the temperature-dependent heating power of magnetically heated nanoparticles up to high temperature.
    Mille N; Faure S; Estrader M; Yi D; Marbaix J; De Masi D; Soulantica K; Millán A; Chaudret B; Carrey J
    Rev Sci Instrum; 2021 May; 92(5):054905. PubMed ID: 34243261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A setup for measuring the Seebeck coefficient and the electrical resistivity of bulk thermoelectric materials.
    Fu Q; Xiong Y; Zhang W; Xu D
    Rev Sci Instrum; 2017 Sep; 88(9):095111. PubMed ID: 28964241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new internally heated diamond anvil cell system for time-resolved optical and x-ray measurements.
    Mijiti Y; Perri M; Coquet J; Nataf L; Minicucci M; Trapananti A; Irifune T; Baudelet F; Di Cicco A
    Rev Sci Instrum; 2020 Aug; 91(8):085114. PubMed ID: 32872921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A self-heated silicon nanowire array: selective surface modification with catalytic nanoparticles by nanoscale Joule heating and its gas sensing applications.
    Yun J; Jin CY; Ahn JH; Jeon S; Park I
    Nanoscale; 2013 Aug; 5(15):6851-6. PubMed ID: 23770994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High temperature setup for measurements of Seebeck coefficient and electrical resistivity of thin films using inductive heating.
    Adnane L; Williams N; Silva H; Gokirmak A
    Rev Sci Instrum; 2015 Oct; 86(10):105119. PubMed ID: 26520996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hot-film air flow sensor for elevated temperatures.
    Balakrishnan V; Dinh T; Nguyen T; Phan HP; Nguyen TK; Dao DV; Nguyen NT
    Rev Sci Instrum; 2019 Jan; 90(1):015007. PubMed ID: 30709194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Joule Heating-Induced Metal-Insulator Transition in Epitaxial VO2/TiO2 Devices.
    Li D; Sharma AA; Gala DK; Shukla N; Paik H; Datta S; Schlom DG; Bain JA; Skowronski M
    ACS Appl Mater Interfaces; 2016 May; 8(20):12908-14. PubMed ID: 27136956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wearable transparent thermal sensors and heaters based on metal-plated fibers and nanowires.
    Jo HS; Kwon HJ; Kim TG; Park CW; An S; Yarin AL; Yoon SS
    Nanoscale; 2018 Nov; 10(42):19825-19834. PubMed ID: 30334563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3ω correction method for eliminating resistance measurement error due to Joule heating.
    Guralnik B; Hansen O; Henrichsen HH; Beltrán-Pitarch B; Østerberg FW; Shiv L; Marangoni TA; Stilling-Andersen AR; Cagliani A; Hansen MF; Nielsen PF; Oprins H; Vermeersch B; Adelmann C; Dutta S; Borup KA; Mihiretie BM; Petersen DH
    Rev Sci Instrum; 2021 Sep; 92(9):094711. PubMed ID: 34598479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple pulse-heating experiments with different current to determine total emissivity, heat capacity, and electrical resistivity of electrically conductive materials at high temperatures.
    Watanabe H; Yamashita Y
    Rev Sci Instrum; 2012 Jan; 83(1):014904. PubMed ID: 22299976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying Joule Heating and Mass Transport in Metal Nanowires During Controlled Electromigration.
    Yagi M; Shirakashi JI
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30669491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Joule heating monitoring in a microfluidic channel by observing the Brownian motion of an optically trapped microsphere.
    Brans T; Strubbe F; Schreuer C; Vandewiele S; Neyts K; Beunis F
    Electrophoresis; 2015 Sep; 36(17):2102-9. PubMed ID: 25963750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Internal electrolyte temperatures for polymer and fused-silica capillaries used in capillary electrophoresis.
    Evenhuis CJ; Guijt RM; Macka M; Marriott PJ; Haddad PR
    Electrophoresis; 2005 Nov; 26(22):4333-44. PubMed ID: 16287176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous optical and infrared thermal imaging of isotachophoresis.
    Terzis A; Ramachandran A; Kang J; Santiago JG
    Anal Chim Acta; 2020 Sep; 1131():9-17. PubMed ID: 32928483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat dissipation from suspended self-heated nanowires: gas sensor prospective.
    Zhang J; Strelcov E; Kolmakov A
    Nanotechnology; 2013 Nov; 24(44):444009. PubMed ID: 24113219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.