These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 33514238)

  • 1. Thermal and electrical transport at nanosized metallic contacts: In the diffusive-ballistic region at room temperature.
    Wang J; Chen L; Wang C; Mao C; Yu H; Cui Z
    Rev Sci Instrum; 2021 Jan; 92(1):015121. PubMed ID: 33514238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Electrical Contact Resistance on Measurement of Thermal Conductivity and Wiedemann-Franz Law for Individual Metallic Nanowires.
    Wang J; Wu Z; Mao C; Zhao Y; Yang J; Chen Y
    Sci Rep; 2018 Mar; 8(1):4862. PubMed ID: 29559677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantized thermal transport in single-atom junctions.
    Cui L; Jeong W; Hur S; Matt M; Klöckner JC; Pauly F; Nielaba P; Cuevas JC; Meyhofer E; Reddy P
    Science; 2017 Mar; 355(6330):1192-1195. PubMed ID: 28209640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat transport through atomic contacts.
    Mosso N; Drechsler U; Menges F; Nirmalraj P; Karg S; Riel H; Gotsmann B
    Nat Nanotechnol; 2017 May; 12(5):430-433. PubMed ID: 28166205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The experimental investigation of thermal conductivity and the Wiedemann-Franz law for single metallic nanowires.
    Völklein F; Reith H; Cornelius TW; Rauber M; Neumann R
    Nanotechnology; 2009 Aug; 20(32):325706. PubMed ID: 19620755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How To Probe the Limits of the Wiedemann-Franz Law at Nanoscale.
    Bürkle M; Asai Y
    Nano Lett; 2018 Nov; 18(11):7358-7361. PubMed ID: 30336053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Electron Heat Conduction in TaS
    Yi H; Bahng J; Park S; Dang DX; Sakong W; Kang S; Ahn BW; Kim J; Kim KK; Lim JT; Lim SC
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34442999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anomalously low electronic thermal conductivity in metallic vanadium dioxide.
    Lee S; Hippalgaonkar K; Yang F; Hong J; Ko C; Suh J; Liu K; Wang K; Urban JJ; Zhang X; Dames C; Hartnoll SA; Delaire O; Wu J
    Science; 2017 Jan; 355(6323):371-374. PubMed ID: 28126811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanocontact resistance and structural disorder induced resistivity variation in metallic metal-oxide nanowires.
    Lin YF; Wu ZY; Lin KC; Chen CC; Jian WB; Chen FR; Kai JJ
    Nanotechnology; 2009 Nov; 20(45):455401. PubMed ID: 19822926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. T-Square Dependence of the Electronic Thermal Resistivity of Metallic Strontium Titanate.
    Jiang S; Fauqué B; Behnia K
    Phys Rev Lett; 2023 Jul; 131(1):016301. PubMed ID: 37478431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resistive-nanoindentation on gold: Experiments and modeling of the electrical contact resistance.
    Volpi F; Rusinowicz M; Comby-Dassonneville S; Parry G; Boujrouf C; Braccini M; Pellerin D; Verdier M
    Rev Sci Instrum; 2021 Mar; 92(3):035102. PubMed ID: 33820049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of ballistic gold conductor using ultra-high-vacuum transmission electron microscopy.
    Oshima Y
    J Electron Microsc (Tokyo); 2012 Jun; 61(3):133-44. PubMed ID: 22434562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spin-dependent tunneling transport into CrO2 nanorod devices with nonmagnetic contacts.
    Song Y; Schmitt AL; Jin S
    Nano Lett; 2008 Aug; 8(8):2356-61. PubMed ID: 18616325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat dissipation in quasi-ballistic single-atom contacts at room temperature.
    Tsutsui M; Chen YC
    Sci Rep; 2019 Dec; 9(1):18677. PubMed ID: 31822731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wiedemann-Franz Law for Molecular Hopping Transport.
    Craven GT; Nitzan A
    Nano Lett; 2020 Feb; 20(2):989-993. PubMed ID: 31951422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous measurement of thermal conductivity and thermal diffusivity of individual microwires by using a cross-wire geometry.
    Chen H; Sun H; Chen L; Chen Y; Chen J; Qiu X; Wang J
    Rev Sci Instrum; 2022 Feb; 93(2):024901. PubMed ID: 35232137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Violation of the Wiedemann-Franz law at the Kondo breakdown quantum critical point.
    Kim KS; Pépin C
    Phys Rev Lett; 2009 Apr; 102(15):156404. PubMed ID: 19518660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ballistic Phonons in Ultrathin Nanowires.
    Vakulov D; Gireesan S; Swinkels MY; Chavez R; Vogelaar T; Torres P; Campo A; De Luca M; Verheijen MA; Koelling S; Gagliano L; Haverkort JEM; Alvarez FX; Bobbert PA; Zardo I; Bakkers EPAM
    Nano Lett; 2020 Apr; 20(4):2703-2709. PubMed ID: 32091910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical and thermal conductivities of polycrystalline platinum nanowires.
    Wang J; Yu H; Walbert T; Antoni M; Wang C; Xi W; Muench F; Yang J; Chen Y; Ensinger W
    Nanotechnology; 2019 Nov; 30(45):455706. PubMed ID: 31370046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite-temperature violation of the anomalous transverse Wiedemann-Franz law.
    Xu L; Li X; Lu X; Collignon C; Fu H; Koo J; Fauqué B; Yan B; Zhu Z; Behnia K
    Sci Adv; 2020 Apr; 6(17):eaaz3522. PubMed ID: 32494640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.