These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 33514317)

  • 21. The pyrenoidal linker protein EPYC1 phase separates with hybrid Arabidopsis-Chlamydomonas Rubisco through interactions with the algal Rubisco small subunit.
    Atkinson N; Velanis CN; Wunder T; Clarke DJ; Mueller-Cajar O; McCormick AJ
    J Exp Bot; 2019 Oct; 70(19):5271-5285. PubMed ID: 31504763
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A protein blueprint of the diatom CO
    Nam O; MusiaƂ S; Demulder M; McKenzie C; Dowle A; Dowson M; Barrett J; Blaza JN; Engel BD; Mackinder LCM
    Cell; 2024 Oct; 187(21):5935-5950.e18. PubMed ID: 39368476
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modelling the pyrenoid-based CO
    Fei C; Wilson AT; Mangan NM; Wingreen NS; Jonikas MC
    Nat Plants; 2022 May; 8(5):583-595. PubMed ID: 35596080
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Will an algal CO2-concentrating mechanism work in higher plants?
    Meyer MT; McCormick AJ; Griffiths H
    Curr Opin Plant Biol; 2016 Jun; 31():181-8. PubMed ID: 27194106
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Origins and diversity of eukaryotic CO2-concentrating mechanisms: lessons for the future.
    Meyer M; Griffiths H
    J Exp Bot; 2013 Jan; 64(3):769-86. PubMed ID: 23345319
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Immunogold localization of ribulose-1,5-bisphosphate carborylsae/oxygenase in chloroplasts of Chlorella].
    He PM; Zhang RX; Zhang DB; Zhao JH; Liang WQ
    Shi Yan Sheng Wu Xue Bao; 2001 Mar; 34(1):18-23. PubMed ID: 12549006
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Model of the carbon concentrating mechanism in chloroplasts of eukaryotic algae.
    Thoms S; Pahlow M; Wolf-Gladrow DA
    J Theor Biol; 2001 Feb; 208(3):295-313. PubMed ID: 11207092
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The intracellular localization of ribulose-1,5-bisphosphate Carboxylase/Oxygenase in chlamydomonas reinhardtii.
    Borkhsenious ON; Mason CB; Moroney JV
    Plant Physiol; 1998 Apr; 116(4):1585-91. PubMed ID: 9536077
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CO
    Wunder T; Oh ZG; Mueller-Cajar O
    Traffic; 2019 Jun; 20(6):380-389. PubMed ID: 31001862
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pyrenoid functions revealed by proteomics in Chlamydomonas reinhardtii.
    Zhan Y; Marchand CH; Maes A; Mauries A; Sun Y; Dhaliwal JS; Uniacke J; Arragain S; Jiang H; Gold ND; Martin VJJ; Lemaire SD; Zerges W
    PLoS One; 2018; 13(2):e0185039. PubMed ID: 29481573
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pyrenoid: Organelle with efficient CO
    An Y; Wang D; Du J; Wang X; Xiao J
    J Plant Physiol; 2023 Aug; 287():154044. PubMed ID: 37392525
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pyrenoid loss impairs carbon-concentrating mechanism induction and alters primary metabolism in Chlamydomonas reinhardtii.
    Mitchell MC; Metodieva G; Metodiev MV; Griffiths H; Meyer MT
    J Exp Bot; 2017 Jun; 68(14):3891-3902. PubMed ID: 28520898
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The structural basis of Rubisco phase separation in the pyrenoid.
    He S; Chou HT; Matthies D; Wunder T; Meyer MT; Atkinson N; Martinez-Sanchez A; Jeffrey PD; Port SA; Patena W; He G; Chen VK; Hughson FM; McCormick AJ; Mueller-Cajar O; Engel BD; Yu Z; Jonikas MC
    Nat Plants; 2020 Dec; 6(12):1480-1490. PubMed ID: 33230314
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pyrenoid loss in Chlamydomonas reinhardtii causes limitations in CO2 supply, but not thylakoid operating efficiency.
    Caspari OD; Meyer MT; Tolleter D; Wittkopp TM; Cunniffe NJ; Lawson T; Grossman AR; Griffiths H
    J Exp Bot; 2017 Jun; 68(14):3903-3913. PubMed ID: 28911055
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A linker protein from a red-type pyrenoid phase separates with Rubisco via oligomerizing sticker motifs.
    Oh ZG; Ang WSL; Poh CW; Lai SK; Sze SK; Li HY; Bhushan S; Wunder T; Mueller-Cajar O
    Proc Natl Acad Sci U S A; 2023 Jun; 120(25):e2304833120. PubMed ID: 37311001
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A gene duplication/loss event in the ribulose-1,5-bisphosphate-carboxylase/oxygenase (rubisco) small subunit gene family among accessions of Arabidopsis thaliana.
    Schwarte S; Tiedemann R
    Mol Biol Evol; 2011 Jun; 28(6):1861-76. PubMed ID: 21220760
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The phase separation underlying the pyrenoid-based microalgal Rubisco supercharger.
    Wunder T; Cheng SLH; Lai SK; Li HY; Mueller-Cajar O
    Nat Commun; 2018 Nov; 9(1):5076. PubMed ID: 30498228
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction, functional relations and evolution of large and small subunits in Rubisco from prokaryota and eukaryota.
    McFadden BA; Torres-Ruiz J; Daniell H; Sarojini G
    Philos Trans R Soc Lond B Biol Sci; 1986 Oct; 313(1162):347-58. PubMed ID: 2878448
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolution of RLSB, a nuclear-encoded S1 domain RNA binding protein associated with post-transcriptional regulation of plastid-encoded rbcL mRNA in vascular plants.
    Yerramsetty P; Stata M; Siford R; Sage TL; Sage RF; Wong GK; Albert VA; Berry JO
    BMC Evol Biol; 2016 Jun; 16(1):141. PubMed ID: 27356975
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biolistics-mediated transformation of hornworts and its application to study pyrenoid protein localization.
    Lafferty DJ; Robison TA; Gunadi A; Schafran PW; Gunn LH; Van Eck J; Li FW
    J Exp Bot; 2024 Aug; 75(16):4760-4771. PubMed ID: 38779949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.