These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 33514758)

  • 1. 3D characterization of low optical absorption structures in large crystalline sapphire substrates for gravitational wave detectors.
    Marchiò M; Leonardi M; Bazzan M; Flaminio R
    Sci Rep; 2021 Jan; 11(1):2654. PubMed ID: 33514758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation between birefringence and absorption mapping in large-size Sapphire substrates for gravitational-wave interferometry.
    Zeidler S; Eisenmann M; Bazzan M; Li P; Leonardi M
    Sci Rep; 2023 Dec; 13(1):21393. PubMed ID: 38049471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculation method for light scattering caused by multilayer coated mirrors in gravitational wave detectors.
    Zeidler S; Akutsu T; Torii Y; Hirose E; Aso Y; Flaminio R
    Opt Express; 2017 Mar; 25(5):4741-4760. PubMed ID: 28380744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical performance of large-area crystalline coatings.
    Marchiò M; Flaminio R; Pinard L; Forest D; Deutsch C; Heu P; Follman D; Cole GD
    Opt Express; 2018 Mar; 26(5):6114-6125. PubMed ID: 29529806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of advanced photon calibrator for Kamioka gravitational wave detector (KAGRA).
    Inoue Y; Hsieh BH; Chen KH; Chu YK; Ito K; Kozakai C; Shishido T; Tomigami Y; Akutsu T; Haino S; Izumi K; Kajita T; Kanda N; Lin CS; Lin FK; Moriwaki Y; Ogaki W; Pang HF; Sawada T; Tomaru T; Suzuki T; Tsuchida S; Ushiba T; Washimi T; Yamamoto T; Yokozawa T
    Rev Sci Instrum; 2023 Jul; 94(7):. PubMed ID: 37498166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical loss study of the cryogenic molecular layer using a folded cavity for future gravitational-wave detectors.
    Tanioka S; Aso Y
    Opt Express; 2021 Mar; 29(5):6780-6793. PubMed ID: 33726191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of mirror coatings for gravitational-wave detectors.
    Steinlechner J
    Philos Trans A Math Phys Eng Sci; 2018 May; 376(2120):. PubMed ID: 29661974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of thermal fluctuations in a cryogenic laser interferometric gravitational wave detector.
    Uchiyama T; Miyoki S; Telada S; Yamamoto K; Ohashi M; Agatsuma K; Arai K; Fujimoto MK; Haruyama T; Kawamura S; Miyakawa O; Ohishi N; Saito T; Shintomi T; Suzuki T; Takahashi R; Tatsumi D
    Phys Rev Lett; 2012 Apr; 108(14):141101. PubMed ID: 22540781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Twin mirrors for laser interferometric gravitational-wave detectors.
    Sassolas B; Benoît Q; Flaminio R; Forest D; Franc J; Galimberti M; Lacoudre A; Michel C; Montorio JL; Morgado N; Pinard L
    Appl Opt; 2011 May; 50(13):1894-9. PubMed ID: 21532671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large and extremely low loss: the unique challenges of gravitational wave mirrors.
    Degallaix J; Michel C; Sassolas B; Allocca A; Cagnoli G; Balzarini L; Dolique V; Flaminio R; Forest D; Granata M; Lagrange B; Straniero N; Teillon J; Pinard L
    J Opt Soc Am A Opt Image Sci Vis; 2019 Nov; 36(11):C85-C94. PubMed ID: 31873699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermoelastic-damping noise from sapphire mirrors in a fundamental-noise-limited interferometer.
    Black ED; Villar A; Libbrecht KG
    Phys Rev Lett; 2004 Dec; 93(24):241101. PubMed ID: 15697789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature Dependence of the Mechanical Dissipation of Gallium Bonds for Use in Gravitational Wave Detectors.
    Haughian K; Murray PG; Hill S; Hough J; Lacaille G; Martin IW; Rowan S; Tait S; Bassiri R; Fejer MM; Khadaka S; Markosyan A
    Phys Rev Lett; 2024 Jun; 132(23):231401. PubMed ID: 38905666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Birefringence compensation method of test-mass substrates for gravitational wave detectors with arbitrary polarization states.
    Eisenmann M; Singh S; Leonardi M
    Opt Lett; 2024 Jun; 49(12):3404-3407. PubMed ID: 38875630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modular suspension system with low acoustic coupling to the suspended test mass in a prototype gravitational wave detector.
    Fang Q; Zhao C; Blair C; Ju L; Blair DG
    Rev Sci Instrum; 2018 Jul; 89(7):074501. PubMed ID: 30068104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytical model for ring heater thermal compensation in the Advanced Laser Interferometer Gravitational-wave Observatory.
    Ramette J; Kasprzack M; Brooks A; Blair C; Wang H; Heintze M
    Appl Opt; 2016 Apr; 55(10):2619-25. PubMed ID: 27139664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parametric instabilities and their control in advanced interferometer gravitational-wave detectors.
    Zhao C; Ju L; Degallaix J; Gras S; Blair DG
    Phys Rev Lett; 2005 Apr; 94(12):121102. PubMed ID: 15903902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feedback control of thermal lensing in a high optical power cavity.
    Fan Y; Zhao C; Degallaix J; Ju L; Blair DG; Slagmolen BJ; Hosken DJ; Brooks AF; Veitch PJ; Munch J
    Rev Sci Instrum; 2008 Oct; 79(10):104501. PubMed ID: 19044736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the room temperature payload prototype for the cryogenic interferometric gravitational wave detector KAGRA.
    Peña Arellano FE; Sekiguchi T; Fujii Y; Takahashi R; Barton M; Hirata N; Shoda A; van Heijningen J; Flaminio R; DeSalvo R; Okutumi K; Akutsu T; Aso Y; Ishizaki H; Ohishi N; Yamamoto K; Uchiyama T; Miyakawa O; Kamiizumi M; Takamori A; Majorana E; Agatsuma K; Hennes E; van den Brand J; Bertolini A
    Rev Sci Instrum; 2016 Mar; 87(3):034501. PubMed ID: 27036793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen-Induced Ultralow Optical Absorption and Mechanical Loss in Amorphous Silicon for Gravitational-Wave Detectors.
    Molina-Ruiz M; Markosyan A; Bassiri R; Fejer MM; Abernathy M; Metcalf TH; Liu X; Vajente G; Ananyeva A; Hellman F
    Phys Rev Lett; 2023 Dec; 131(25):256902. PubMed ID: 38181375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Note: silicon carbide telescope dimensional stability for space-based gravitational wave detectors.
    Sanjuán J; Korytov D; Mueller G; Spannagel R; Braxmaier C; Preston A; Livas J
    Rev Sci Instrum; 2012 Nov; 83(11):116107. PubMed ID: 23206114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.