BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33514765)

  • 1. Towards a mechanistic understanding of particle shrinkage during biomass pyrolysis via synchrotron X-ray microtomography and in-situ radiography.
    Barr MR; Jervis R; Zhang Y; Bodey AJ; Rau C; Shearing PR; Brett DJL; Titirici MM; Volpe R
    Sci Rep; 2021 Jan; 11(1):2656. PubMed ID: 33514765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pore structure and environmental serves of biochars derived from different feedstocks and pyrolysis conditions.
    Lu S; Zong Y
    Environ Sci Pollut Res Int; 2018 Oct; 25(30):30401-30409. PubMed ID: 30159845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochar physicochemical parameters as a result of feedstock material and pyrolysis temperature: predictable for the fate of biochar in soil?
    Břendová K; Száková J; Lhotka M; Krulikovská T; Punčochář M; Tlustoš P
    Environ Geochem Health; 2017 Dec; 39(6):1381-1395. PubMed ID: 28664248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate.
    Gai X; Wang H; Liu J; Zhai L; Liu S; Ren T; Liu H
    PLoS One; 2014; 9(12):e113888. PubMed ID: 25469875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synchrotron X-ray microtomography and multifractal analysis for the characterization of pore structure and distribution in softwood pellet biochar.
    Srocke F; Han L; Dutilleul P; Xiao X; Smith DL; Mašek O
    Biochar; 2021; 3(4):671-686. PubMed ID: 34723132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomass microspheres - A new method for characterization of biomass pyrolysis and shrinkage.
    Zolghadr A; Kelley MD; Sokhansefat G; Moradian M; Sullins B; Ley T; Biernacki JJ
    Bioresour Technol; 2019 Feb; 273():16-24. PubMed ID: 30368158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production and properties assessment of biochars from rapeseed and poplar waste biomass for environmental applications in Romania.
    Gheorghe-Bulmau C; Volceanov A; Stanciulescu I; Ionescu G; Marculescu C; Radoiu M
    Environ Geochem Health; 2022 Jun; 44(6):1683-1696. PubMed ID: 34414519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical, physical and morphological properties of biochars produced from agricultural residues: Implications for their use as soil amendment.
    Campos P; Miller AZ; Knicker H; Costa-Pereira MF; Merino A; De la Rosa JM
    Waste Manag; 2020 Mar; 105():256-267. PubMed ID: 32088572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Miniature laser powder bed fusion system for in situ synchrotron x-ray micro-computed tomography experiments at the European Synchrotron Radiation Facility.
    Lhuissier P; Hébrard L; Bataillon X; Lapouge P; Coste F; Peyre P; Boller E; Blandin JJ; Salvo L; Martin G
    Rev Sci Instrum; 2022 Aug; 93(8):083701. PubMed ID: 36050103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ex-situ catalytic fast pyrolysis of biomass over HZSM-5 in a two-stage fluidized-bed/fixed-bed combination reactor.
    Hu C; Xiao R; Zhang H
    Bioresour Technol; 2017 Nov; 243():1133-1140. PubMed ID: 28764127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of pinewood, peanut shell, and bamboo biomass derived biochars produced via hydrothermal conversion and pyrolysis.
    Huff MD; Kumar S; Lee JW
    J Environ Manage; 2014 Dec; 146():303-308. PubMed ID: 25190598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 4D structural changes and pore network model of biomass during pyrolysis.
    Edeh IG; Masek O; Fusseis F
    Sci Rep; 2023 Dec; 13(1):22863. PubMed ID: 38129628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pore-Scale Investigation of Dynamic Immiscible Displacement in Layered Media using Synchrotron X-ray Microtomography.
    Kim M; Kim KY; Lim JH; Kim CY; Kim SG; Han G; Han WS; Park E
    Environ Sci Technol; 2022 Jan; 56(1):282-292. PubMed ID: 34881883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Pyrolysis Temperature and Feedstock on Surface Charge and Functional Group Chemistry of Biochars.
    Banik C; Lawrinenko M; Bakshi S; Laird DA
    J Environ Qual; 2018 May; 47(3):452-461. PubMed ID: 29864182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling of pyrolysis of large wood particles.
    Sadhukhan AK; Gupta P; Saha RK
    Bioresour Technol; 2009 Jun; 100(12):3134-9. PubMed ID: 19231172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass.
    Wang S; Gao B; Zimmerman AR; Li Y; Ma L; Harris WG; Migliaccio KW
    Chemosphere; 2015 Sep; 134():257-62. PubMed ID: 25957037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Location of water in fresh sugarcane bagasse observed by synchrotron X-ray microtomography.
    Driemeier CE; Ling LY; Yancy-Caballero D; Mantelatto PE; Dias CSB; Archilha NL
    PLoS One; 2018; 13(12):e0208219. PubMed ID: 30521559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel insights into the enrichment of phenols from walnut shell pyrolysis loop: Torrefaction coupled fractional condensation.
    Zhu X; Luo Z; Zhu X
    Waste Manag; 2021 Jul; 131():462-470. PubMed ID: 34271394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical and chemical characterization of waste wood derived biochars.
    Yargicoglu EN; Sadasivam BY; Reddy KR; Spokas K
    Waste Manag; 2015 Feb; 36():256-68. PubMed ID: 25464942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrogen enrichment potential of biochar in relation to pyrolysis temperature and feedstock quality.
    Jassal RS; Johnson MS; Molodovskaya M; Black TA; Jollymore A; Sveinson K
    J Environ Manage; 2015 Apr; 152():140-4. PubMed ID: 25621388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.